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The operating efficiency of an adaptive optics system depends strongly on the 

quality of a wavefront approximation by an adaptive mirror. This paper is devoted 

to the development of a new method of analyzing the operating efficiency of a 

segmented adaptive mirror. In the method, the cumulant efficiency criterion is used 

with Poisson noise in control channels. 
 

1. INTRODUCTION 

 

At the present time segmented adaptive mirrors are 

widely used1,2 in the design of adaptive optics systems 
intended for compensation for nonstationary aberrations 
of laser beams propagating in the turbulent atmosphere.  
This is primarily due to high quality of correction 
comparable with that of a flexible mirror in spite of a 
step-wise approximation of a wavefront.  In the design 
of the adaptive optics systems on the basis of such 
mirrors the problem arises of evaluation of their 
efficiency. Assessment of potential characteristics of an 
adaptive mirror, when compensating for phase 
distortions of the optical radiation wavefront, allows 
one to predict the efficiency of a system with such a 
mirror.  Considering this problem, one should subdivide 
the possible errors into two types.  The first type of 
error occurs due to finite number of actuators of a 
segmented adaptive mirror. The technique of evaluation 
of such errors is described in Ref. 3.  Let us call them 
the errors of the approximation. The errors of the 
second type are due to noise in control channels of 
adaptive optics system.  Further we refer to them as 
noisy errors. The peculiarity of these two types of 
errors is the following.  The larger is the number of 
adaptive optics system actuators, the lower is the value 
of the first error, and the higher is the value of the 
second error. So the typical problem of optimization 
arises in the form 

 

min
N

 σ2 = σ2

a + σ2

n, (1) 

 

where σ2 is the standard deviation of the total error, σ2

a 
is the standard deviation of the approximation error, 

and σ2

n is the standard deviation of the noisy error. 
It should be noted that from the point of view of 

an analysis of the efficiency, most interesting is the case 
when Poisson noise arising from shot noise of 
photodetectors is present in the control channels of the 
adaptive optics system.  It is precisely this situation 

that arises in an analysis of the efficiency of multidither 
system with a segmented mirror.  

In this paper, a radically new approach has been 
proposed to evaluate the operating efficiency of a 
segmented mirror used in the adaptive optics system.  
The approach is based on the cumulant criterion of 
efficiency. 

The first advantage of the cumulant analysis 
technique4 is clearly defined statistical meaning of 
cumulants, in contrast to moments of random variables.  
They are uncorrelated and can be defined individually.  
This leads to the simple dependence of various mean 
values at the output of nonlinear system on the 
cumulants of the input parameters.  The second 
advantage of cumulants is connected with the fact that 
allowance for cumulants of higher orders allows one to 
describe easily any non-Gaussian random variable. It is 
just this feature that makes the cumulant technique so 
valuable for description of non-Gaussian variables such 
as Poisson ones.  It should be noted that a real function 
that approximates the probability distribution always 
corresponds to a finite set of cumulants, whereas a non-
singular function with zero higher-order moments is 
nonexistent.  This fact becomes very important for 
approximate representation of random variables that 
have only a finite set of cumulants.  Precisely this 
approach is suitable for investigation of the transforms 
of Poisson random variables that characterize processes 
in the adaptive optics systems. 

 
2. CUMULANT EFFICIENCY CRITERION 

 
Let us consider the problem of analyzing the 

efficiency of a segmented mirror in the following 
statement.  Let us introduce the Euclidean space P 
with the scalar product of the form 

 

⌡⌠
 

 

U(r) V(r) dr = (U, V) (2) 

 

with the norm 
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**U, V** = (U, V)0.5.  (3) 
 

Let us consider a system of orthonormal functions 
S such as  

 

(Si, Sj) = 0   for i ≠ j, 
(Si, Sj) = 1   for i = j. (4) 
 

in space P. 
The surface of an adaptive mirror can be 

represented as a linear combination of functions3 Si(r) 
further referred to as response functions of the adaptive 
mirror 
 

W(r) = ∑
i=1

N

 Si(r) ai,   r ∈ Ω, (5) 

 

where W(r) is the function that describes the profile of 
the segmented adaptive mirror, ai is the control signal 
in the ith control channel, Ω is the aperture  plane of 
the adaptive optics system, and N  is the number of 
actuators.  

Let us write the response functions Si(r) in the 
following form: 

 

Si(r) = 1   for r ∈ Ωi, 
Si(r) = 0   for r ∉ Ωi, (6) 
 

where Ωi is the surface of the ith subaperture of the 
adaptive optics system. 

Principally, the subaperture of the adaptive optics 
system can have arbitrary shape, for example, 
hexagonal, circular, or rectangular. For the last case 
the response function, for example,  has the form 

 

Si(r) = 1  for x ∈ [xi + Δx]  y ∈ [yi + Δy],  r = {x, y}; 
Si(r) = 0   for x ∉ [xi + Δx]  y ∉ [yi + Δy].  (7) 
 

 

Subscripts i and j are commonly used to describe 
subapertures of different shapes.  However, to reduce 
the number of subscripts for the finite number of 
subapertures they always can be re-numerated.  It also 
should be noted that W(r) differs from the sought-after 
phase profile Φ(r). This difference referred to as the 
error of the approximation is not considered in the 
present paper.  

The limits set on the dynamic range of control 
signals can be ignored since the range of variation of 
displacements of piezoceramic actuators of modern  
mirrors always satisfies the requirements (as a rule, 
they are ±2λ1, where λ1 is a wavelength). 

Irrespective of a segmented mirror control 
algorithm, the additive noise is always present in the 
control channels of the adaptive system. This noise will 
be described by a set of random variables ni.  It should 
be noted that mathematical calculations can be 
essentially simplified in such approach, and the results 
obtained can be generalized on stationary random 
processes.  Let us assume that a set of cumulants κ 

describing a set of Poisson random variables ni is 
known.  All combined cumulants κij should be taken 
zero in this case, and other cumulants - equal to λ, 
where λ is the parameter of Poisson distribution. For 
real adaptive system the cumulant characteristics 
always can be recalculated to the input of the 
segmented mirror.  Then the noisy error can be written 
as follows: 

 

ΔW(r) = W(r) $ W*(r, n),   r ∈ Ω 
 
or 
 

ΔW(r) = ∑
i=1

N

 Si(r) ai $ ∑
i=1

N

 Si(r) (ai + ni) = ∑
i=1

N

 Si(r) ni, (8) 

 
where W*(r, n) is the mirror response with noisy 
control channels.  

After averaging of the error over the aperture of 
the adaptive optics system, we obtain 

 

ΔWs(r) = 1/s 
⌡⌠

Ω

 

 

∑
i=1

N

 Si(r) ni dr. (9) 

 

Apparently ΔWs(r) is the random variable. Earlier 
in Refs. 3 and 5 it was a priori assumed that its 
mathematical expectation is equal to zero 

 
M[(ΔWs(r))] = mW = 0. (10) 
 

In this case, only the second central moment 

(variance) M[(ΔWs(r) $ mW)2] was considered. 

However, the relation mw = 0 is not fulfilled for real 
adaptive optics systems, and taking into account the 
fact that the higher moments of random variable ni are 
non-Gaussian, the question about the values of the 
higher moments of random variable ΔWs(r) is still an 
open question.  In such a situation it is expedient to 
consider the efficiency criterion of the segmented mirror 
employed in adaptive optics system  

 

θk = <(1/s 
⌡⌠

Ω

 

 

∑
i=1

N

 Si(r) ni dr)k>,   k = 1, L, (11) 

 
where the angular brackets denote averaging over an 
ensemble of realizations. 

In essence, the components of vector θ are the 
higher-order moments of random variable ΔWs(r).  In 
what follows we obtain and analyze the relations of the 
form 

 

θ k = f (Si(r) ni , N, κ) . 
 
As it occurred, such description is very convenient.  It 
allows us to obtain the analytical equations for many 
practically important cases. 
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3. DERIVATION OF BASIC RELATIONS 

 

At k = 1, Eq. (11) takes the form 
 

θ1 = <(1/s 
⌡⌠

Ω

 

 

∑
i=1

N

 Si(r) ni dr)> = N α1, (12) 

 

where α1 is the first-order moment of the random 
variable ni, s is the area of the adaptive system 
aperture. 

In the presence of Poisson noise in the control 
channels of adaptive optics system we have α1 = λ = κ1, 
where λ is the parameter of Poisson distribution.  

We can write the following equation for θ2 
 

θ2 = <(1/s 
⌡⌠

Ω

 

 

∑
i=1

N

 Si(r) ni dr1 × 1/s 
⌡⌠

Ω

 

 

∑
j=1

N

 Sj(r) nj dr2)> .  

  (13) 
 

In accordance with the properties of cumulants of 
Poisson random variables, in Eq. (13) we have  
 

<ni ni> = α2 = λ2 + λ, (14) 
 

where α2  is the second-order moment of a random 
variable ni.  

Taking into account Eq. (14) and the fact that 
according to Eq. (4) for i ≠ j all products SiSj  are 
equal to zero, Eq. (13) is written as 

 

θ2 = N (λ2 + λ). (15) 
 

For θ3  we derive the following expression: 
 

θ3 = <(∑
i=1

N

 ∑
j=1

N

 ∑
k=1

N

 
⌡⌠

Ω

 

 

⌡⌠

Ω

 

 

⌡⌠

Ω

 

 

Sm Sn Sr dr1 dr2 dr3 ni nj nk)>.  

  (16) 
 

According to the properties of cumulants of 

Poisson random variables, the product <ni ni ni> in 
Eq. (16) is 

 

<ni ni ni> = α3 = κ3 + 3 κ1 κ2 + κ3

1 = λ3 + 3 λ2 + λ. (17) 
 

Taking into account Eqs. (4) and (17), after 
analogous manipulations we have 

 

θ3 = N (λ3 + 3 λ2 + λ). (18) 
 

Expression for θ4  is written as follows: 
 

θ4=<(∑
i=1

N

 

 

∑
j=1

N

 

 

∑
k=1

N

 

 

∑
l=1

N

 

 

⌡⌠

Ω

 

 

⌡⌠

Ω

 

 

⌡⌠

Ω

 

 

⌡⌠

Ω

 

 

mSnSrStdr1dr2dr3dr4ninjnknl)>.  

  (19) 
 

Then for Poisson random variables we have 
 

<ni ni nj nj> = α2

2 = λ4 + 2 λ3 + λ2. (20) 
 

Taking into account Eq. (20), Eq. (19) can be 
written as 

 

θ4 = N (λ4 + 2 λ3 + λ2). (21) 
 

Analogously, considering the properties of 
orthogonality for step-wise response functions and using 
the corresponding equations for the higher-order 
moments (expressed in terms of the cumulants of 
Poisson distribution) of random variable ni, it is 
possible to obtain the corresponding analytical 
expressions for θk at the given k. 

 
4. PROBABILITY DENSITY OF NOISY ERROR 

DISTRIBUTION FOR A HYPOTHETICAL MIRROR 

 
Taking into account normalization by N, let us 

approximate the components of vector θ by the 
expression 

 

θk = ∑
m=1

k

 (m λ)k$m + λk. (22) 

 
Such an approximation is close enough to 

Eqs. (12), (15), (18), and (21) especially for λ >  > 1. 
The characteristic function of this approximation can be 

written as follows4:  
 

Q(i u) = 1 + ∑
k=1

∞

 θk(i u)k/k!. (23) 

 
Upon substituting Eq. (22) into Eq. (23), we 

obtain 
 

Q(i u) = 1 + ∑
k=1

∞

 λk(i u)k/k! + ∑
k=1

∞

 ∑
m=1

k

 (m λ)k$m
 (i u)k/k!.  

  (24) 
 

The first two terms of Eq. (24) can be written in 
the following form: 

 

1 + ∑
k=1

∞

 λ2k($ 1)k (u)2k/(2k)! + 

 

+ ∑
k=1

∞

 λ2k$1($ 1)k (u) 2k$1/(2k $ 1)! = 

 

= cos(λ u) + i sin(λ u) = exp (i λ u). (25) 
 

Let us transform the third term of Eq. (24) in the 
following way: 
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∑
k=1

∞

 ∑
m=1

k

 (m λ)k$m (i u)k/k! = 

 

= ∑
m=1

k

 (m λ)$m (∑
k=1

∞

 (m λ)2k ($1)k (u)2k/(2k)! + 

 

+ i ∑
k=1

∞

 (m λ)2k$1 ($1)k (u)2k$1/(2k $ 1)!) = 

 

= ∑
m=1

k

 (exp (i m λ u) $ 1)/(λ m)m,   k → ∞. (26) 

 
Finally, the characteristic function of the sought-

for probability density is  
 

Q(i u) = exp (i λ u) + ∑
k=1

∞

 (exp (i m λ u) $ 1)/(λ m)m. (27) 

 

To find out the non-normalized probability  
density of distribution P* we must calculate the reverse 
Fourier transform of the characteristic function Q(iu)  

 

P*(x) = 1/2 π 
⌡⌠

$∞

∞

 

 

Q(i u) exp (i x u) dx. (28) 

 
Upon substituting Eq. (27) into Eq. (28), we 

obtain 
 

P*(x) = 1/2 π 
⌡⌠

$∞

∞

 

 

(exp (i λ u) + 

+ ∑
m=1

∞

 (exp (i m λ u) $ 1)/(λ m)m) exp (i x u) dx = 

= δ(λ $ x) + ∑
m=1

n

 (δ(m λ $ x) $ δ(x))/(λ m)m,  n = 1, ∞ .  

  (29) 
 

The final expression for the probability density P* is  
 

P*(m) = 1/(λ m)m. (30) 
 

To calculate the normalization factor of the 
sought-for distribution density, let us sum up series 
(30) as m → ∞ 

 

∑
m=1

∞

 1/(λ m)m = 1/m! λm = exp (1/λ) $ 1. (31) 

 

On account of normalization condition we obtain 
the following expression for the distribution density: 

 

P(m) = 1/((λ m)m exp (1/λ $ 1)). (32) 
 

Thus, as could be expected, the obtained distribution 
density is discrete. The form of the probability density 
for different λ is shown in Fig. 1. 

 

 
 

FIG. 1. 

 

5. CONCLUSIONS 

 
Choosing the number of control channels with 

allowance for the quality of the wavefront 
approximation by a segmented mirror, at the stage of 
design of the adaptive optics system it is expedient to 
use the developed technique for evaluating the 
efficiency of a flexible adaptive mirror.  To obtain the 
exact values of cumulant criterion elements in the 
calculation of the sums given by Eqs. (12), (15), (18), 
and (21), it is rational to use the specific values of the 
higher-order moments calculated with the use of the set 
of cumulants of corresponding random variables (for 
example, Poisson random variables).  It should be 
specially emphasized that the developed method is 
general. For example, using the actual parameters of 
noise distribution in the control channels, it would be 
easy to derive the corresponding analytical expressions 
for the components of vector θ for the set of cumulants 
of non-Poisson distribution. 
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