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Based on balance equations, peculiar features of multichannel continuous 
generation in a dye laser with broken mode competition operating in a stationary 
regime have been studied.  The classification of spectrum types has been proposed.  
In several specific cases the analytical solutions have been obtained. 

 
In this paper we consider a laser with a point self-

reconstructing cavity.  Its optical arrangement is shown 
in Fig. 1.  Beams, emitted from the reference plane 
(RP) and having traveled through the cavity once or 
twice, come back to the emission point.  We call the 
reference plane as the plane of point self-reconstruction.  
If a diffraction grating is introduced into the cavity, 
point coordinates in the reference plane become 
dependent on the wavelength which is governed by the 
wavelength of a beam having autocollimationally 
reflected from the grating and passed through a point 
of the active medium. 
 

 
 

FIG. 1. 
 

The case of lasing in a cavity with broken mode 
competition in the stationary regime with pumping of 
two sections was considered in Ref. 5. 

Our paper is aimed at solving direct and inverse 
problems of formation of a certain spectrum when a 
wide section of the active medium is pumped. 

The direct problem is to find a spectrum of lasing 
based on given parameters of a cavity, a medium, and  
pump.  The inverse problem is to determine the 
parameters needed for the formation of spectrum of a 
given type based on the type of spectrum and its 
intensity distribution.  In so doing we assume that the 
length of the pumped section in the direction normal to 
the cavity optical axis is much greater than the 
resolution of the intracavity spectral device in the 
active medium plane.  Therefore, we use continuous 
variables related to a point of active medium to  

describe the lasing process.  Propagation of radiation in 
the cavity is described within the framework of the 
geometric optics.1,4 

Let us call the pencil of rays emitted from a point 
in the point self-reconstruction plane and coming back 
to the same point as the lasing channel.  To define the 
lasing channel, we use the coordinates of points of rays 
intersection with the active medium λ′ and λ′′ expressed 
in terms of wavelengths.  At λ′ = λ′′ rays are 
autocollimationally reflected from the grating and we 
refer this channel to as an autocollimational one, 
otherwise, as a circular one.  Let us introduce new 
variables λ (the channel wavelength) and μ based on 
the parameters λ′ and λ′′ as 

 
λ = (λ′ + λ″)/2,   μ = (λ′ $ λ″)/2. 
 

Further consideration is worthwhile to be carried 
out in terms of variables x and y which are related to 
the variables λ and μ by the π/4 rotation 
transformation: 
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y  = 

2
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1 1
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x
y  . 

 
Then it follows from the definition of λ, μ, x, and y 
that 

 

x = λ′/ 2;   y = λ″/ 2 . 
 
We will schematically denote the circular 

channels by a closed oval.  For the autocollimational 
channel the oval degenerates into a straight line. 

Let us now consider the plane (x, y).  Every 
point in this plane corresponds to a lasing channel.  
The set of all possible channels forms a triangular 
domain (Figs. 2 and 3).  The set of points in the 
triangle, which lies on the straight line y = x, 
corresponds to autocollimational channels.  The 
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triangle vertex lying at the right angle corresponds to 
the channel with the maximum separation between 
the intersection points in the medium which is equal 
 

either to the active medium length in the direction 
normal to the resonator optical axis or to the cavity 
pupil diameter in the point self-reconstruction plane. 

 

TABLE I. 
 

No. Type of spectrum Channel configuration Width of spectrum 
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FIG. 2.  

 
FIG. 3. 

 
When a wide section of the active medium is 

pumped, channels may be formed, whose both 
coordinates are within the pumped section.  The domain 
we call the pumping triangle corresponds to this set of 
channels.  The formation of channels which have only 
one coordinate within the pumped section is also 
possible.  Figure 2 shows the correspondence between 
pumping in the medium and channel representations.  
Double pumped channels lie in the regions 1, whereas 
once pumped channels are in the regions 2. 

In the stationary regime of lasing not all channels 
survive but only the set which is represented by a line.  
We call it the curve of initiated channels.  To be sure 
that the set of points corresponding to initiated 
channels is the line rather than a 2-D domain, a passage 
to the limit should be done from a discrete pumping 
case.  In so doing the existence of 2-D domains is 
excluded because of the requirement that in the 
stationary regime no more than N channels generate (N 
is the number of medium divisions). 

Within the pumping triangle we describe the curve 
of initiated channels by the function y = f(x). 

Table I presents the types of possible channels 
configurations according to the ways of their 
intersection in the medium.  If rays do not intersect, 
the configuration corresponds to the uncoupled 
channels.  They may be enclosed channels 1, 
autocollimational channels 2, or an inverted 
configuration of channels 3.  If all channels intersect at 
the only point, this case is referred to as focusing 4.  If 

all channels are coupled like an infinite chain, this case 
is called as completely coupled 5.  If the chain is not 
infinite, but consists of two or three sections, these 
variants are called as two, three, etc. times coupled 
cases 6, 7.  Various combinations of these 
configurations are also possible. 

The complete system of balance equations 
describing the lasing continuum has the following form: 

 
dn(x, t)/dt = b01(n $ n(x, t)) W(x) $ 

$ 

⎣⎢
⎡

⎦⎥
⎤

⌡⌠
 

 

b(x, y) ε q(x, y, t) dy + 
1
τ  n(x, t), (1) 

dq(x, y, t)/dt = F(x, y, t) q(x, y, t), (2) 
 

where  
 

F(x, y, t) = 

ε
2 b(x, y) [n(x, t)+n(y, t)] $ 1/[τ(x, y)];   

 

b01 is the absorption probability per one pumping 
quantum; n $ n(x, t) is the density of dye molecules in 
the ground state; W(x) is the density of pumping 
quanta coming per unit time to the point of the medium 
with coordinate x; b(x, y) is the probability of 
stimulated downward transition per one photon in the 
channel (x, y); τ(x, y) is the mean photon lifetime in 
the channel (x, y); ε is the coefficient of medium 
filling with radiation; n(x, t) is the number of dye 
molecules at the upper lasing level, and simultaneously 
the population inversion because the lower lasing level 
decays very fast; q(x, y, t) is the photon density in the 
medium for the channel (x, y). 

The system of equations (1) and (2) governs the 
evolution of the q(x, y, t) function.  It can be solved 
only numerically. 

In the stationary mode 
 

d/dt ≡ 0;   n(x, t) = n(x);   q(x, y, t) ≡ q(x, y). 
 

It follows from Eq. (2) that for lasing channels 
 

F
g
(x, y)=0 or n(x) + n(y)= 

2
ε b(x, y) τ(x, y)=

2
ε Γ(x, y).   (3) 

 

The threshold condition has the form 
 

qg(x, y) > 0. (4) 
 

Equality (3) can be considered as the condition for f(x) 
curve run, because just for the lasing channels on this 
curve 
 

F 
g
 = F(x, f(x)) ≡ 0  and  q(x, f(x)) > 0. 

 

For the channels, not lasing under the stationary 
regime, the following condition is fulfilled 

 

q 
n
(x, y) = 0,  y ≠ f(x) 

as well as the condition of negative increment 
 

F 
n
(x, y) < 0,   y ≠ f(x). (5) 
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Taking into account the fact that population inversion 
is removed only by photons from the lasing channels, 
Eq. (1) takes the form 

 
b01(n $ n(x)) W(x) $ 
 

$ 
⎣
⎡

⎦
⎤∑

l

 ε b(x, f(x)) ql(x, f(x)) $ 
1
τ  n(x) = 0. (6) 

 
Summation in Eq. (6) is done over the channels which 

intersect the active medium at the point x 2 (there can 
be one or two points depending on the f(x) curve run, 
see Fig. 3).  If f(x) ≡ 0 on the [0, a] section (the case 
of focusing), then the sum transforms into integral. 

Below we present examples of analytical types of 
spectra where we assume that the initiated channels 
pass through the pumped section of the active medium 
two times.  Having additionally defined the pumping 
function with zero, the extension becomes possible to 
the cases when lasing channels pass through the 
pumped section only once or several wide bands are 
pumped (Fig. 2). 
Completely coupled channels. 

The curve of initiated channels has the form 
 

f(0) = 0,   0 < f(x) < 0,   f ′(x) ≠ 0,   x ∈ [0, a]. 
 

This case is nondegenerate, since the balance equations 
for the number of photons and population inversion can 
be solved separately.  Analysis of the solution shows 
that for the threshold condition to be fulfilled the 
pump must be infinitely large at the point (0, 0). 
Autocollimational channels, y = x. 

The solution of the system of balance equations 
has the form: 

 

q(x, x) = 
b01 n W(x)

b(x, x) Γ(x, x) $ 
1

ε τ b(x, x) . (7) 

 
Conditions for occurrence of the type of the spectrum: 

 

Γ(x, x) + Γ(x′, x′) < 2 Γ(x, x′) ,   W(x) > 
Γ(x, x)
b01 τ ε n  

or 
 
Γ(x, x) < Γ(x, x′),   Γ(x′, x′) < Γ(x, x′). (8) 
 
This case is nondegenerate too.  The condition for 
negative increment does not include the pumping, and 
its redistribution over the active medium does not 
change the spectrum type. 
Enclosed and inverted configurations, y = f(x).   

The solution of the system of balance equations 
has the form: 

q(x, f(x))= 
n b01 

W(x) + W(f(x))

b(x, f(x)) Γ(x, f(x))  $ 
2

ε τ b(x, f(x)) .  (9) 

 
Conditions for occurrence of this type of the spectrum: 
 

B(x, f(x))W(x)+B(x ′, f(x ′))W(x ′)<B(x, f(x ′))[W(x)+W(x ′)];  
  (10=) 
 

W(x) + W(f(x)) > 
2 Γ(x, f(x))

n b01 τ ε  ; (10) 
 

B(x, f(x)) < B(x, f(x′)),  B(x′, f(x′)) < B(x, f(x′)).  
  (10=) 
 
Here we introduce the function 

 
B(x, y) =  Γ(x, y)/[W(x) + W(y)]. 

 
Inequalities (10a) are sufficient for providing negative 
increment.  They are equivalent to the existence of the 
plane stationary minimum at the curve f(x) in the 
pumping triangle, i.e., those channels survive which 
have maximum lifetime, gain, and pumping.  If there is 
no plane minimum, the exact inequality should be used.  
This case is degenerate; pumping enters into the 
condition for negative increment and its redistribution 
may cause the spectrum type transformation. 
Channel focusing, f(x⏐≡�0). 

This case is degenerate, i.e., we believe that 
channels do not intersect, but are placed close to each 
other within the physically infinitely small section of 
the active medium.  The system can be solved using a 
limiting transition from the previous case: 

 

q(x, 0) =  n b01 
W(x) + W(0)

2 Γ(x, 0) b(x, 0) $ 
1

τ ε b(x, 0) . (11) 

 
The conditions for occurrence of this type of spectrum 
are analogous to the previous ones, but because f(x) is 
at the boundary of the pumping triangle, sufficient 
conditions necessitate the boundary minimum of the 
function 

 

B(x, 0)W(x) + B(x′, 0)W(x′) < B(x, x′)[W(x)+W(x′)]; 
 

W(x) + W(0) > 
2 Γ(x, 0)
n b01 τ ε  ;  B(x, 0) < B(x, x′),  

 

B(x′, 0) < B(x, x′). (12) 
 

If the domain of inequality fulfillment does not 
span the entire triangle, the combined spectrum can be 
formed, when in different sections of pumping the 
conditions for different spectrum types are fulfilled.  In 
these cases the curve of initiated channels is either 
broken or discontinuous. 
Coupled channels. 

The solution for occurrence of this type of 
spectrum can be analyzed only by solving numerically 
the functional inequalities.  As an example, we present 
here the balance equations for the channels coupled two 
times (see sixth row in the table).  For higher degrees 
of coupling, the escalation of the number of equations 
in the system takes place: 

 

b01 
n

n(x) W(x) $ ⎣
⎡

⎦
⎤ε

2 b q(x, f(x)) + 
1
τ  =  0; 
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$ 
1
τ + b01 

n
n(f(x)) W(f(x)) $ 

$ ⎣
⎡

⎦
⎤ε

2 b q(x, f(x)) + 
ε
2 b q(f(x), f(f(x)))  =  0; 

 

b01 
n

n(f(f(x))) W(f(f(x))) $ 
 

$ ⎣
⎡

⎦
⎤ε

2 b q(f(x), f(f(x))) + 
1
τ  =  0; (13) 

 

n(x) + n(f(x)) =  
2 Γ(x, f(x))

ε  , 

n(f(x)) + n(f(f(x))) =  
2 Γ(f(x), f(f(x)))

ε  . 

 

The equations for the number of photons and 
population inversion are solved simultaneously for the 
variables n(x), n(f(x)), q(x, f(x)), and q(f(x), 
f(f(x))).  This is a degenerate case.  The system of 
equations can be reduced to a cubic equation.  With 
increasing degree of coupling, the degree of algebraic 
equation increases in proportion to the number of 
channel intersections. 

In all cases of lasing the increment surface, which 
is established in the stationary regime, necessarily has a 
plane zero maximum on the curve of initiated channels 
in accordance with the fact that for channels lying on 
f(x) the equality of gain and losses is achieved: 

∂
∂x F(x, y)  

f(x)
≡ 

∂
∂y F(x, y)  

f(x)
≡ 0. 

 
Thus, we propose the approach to analyzing 

multichannel lasing.  The system of balance equations 
is formulated.  In a number of important cases, the 
analytical solutions of this system are obtained, 
which describe the spectrum of output radiation as 
well as the conditions of its occurrence.  In this case 
the solution of direct and inverse problems is possible 
in the domain of parameters determined by 
inequalities (8), (10), and (12). 
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