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Using the moment representation for noise in the control channels we have 
obtained an analytical representation for Strehl ratio. Using flexible and 
segmented mirrors as correctors the influence of correlated and uncorrelated 
Gaussian noise as well as of Poisson noise on the quality of an adaptive optics 
system is analyzed. It is shown that the Strehl ratio does not depend on the 
moment α1 of the noise in the control channels. 

 
1. INTRODUCTION 

 
In optical sounding and communication through 

the turbulent atmosphere, multidither adaptive optics 
systems are used to correct wave front. Normally the 
aperture of an adaptive optics system is divided into m 
subapertures, each of them performs spatial phase 
modulation of the incident wave. Usually dithering of 
subapertures is performed simultaneously. Normally the 
following expansion of the functional of quality into a 
Taylor series1 is used as a control signal in a system 
with a multichannel phase modulation: 

 

I = A2 
⎣⎢
⎡

⎦⎥
⎤N

 
+
 
J2
0(a0) ∑

i=1

m

 cos(βi $ βj)  $ 

 

$ 4 A2 J0(a0) J1(a0) ∑
i=1

m

 ∑
j=1

m

 sin(ωi t) sin(βi $ βj) + 

 

+ 4 A2
 J0(a0) J2(a0) ∑

i=1

m

 cos(2ωi t) cos(βi $ βj) + ... ,  

  (1) 
 

where I is the intensity at a point photodetector, J0,1,2 
are Bessel functions, =0 and ωi are the amplitude and 
the frequency of dithering, βj is the phase at the jth 
subaperture, m is the number of control channels in the 
adaptive optics system. 

To perform the control in actual systems the signal 
proportional to the second term of Eq. (1) extracted 
with a set of band-pass filters is normally used.2  It is 
obvious that, along with the signal X, the noise is also 
present at the filter output. So the following vector of 
control signals Y is applied to the adaptive mirror 

 

Y = X + n, (2) 
 

where n is the vector of an additive noise with known 
moment characteristics, X is the vector of control 
signals calculated by the equation 

X = grad I(B) = 
∂I
∂βi

 ;   i = 1, m ;   

B = {β1, β2, β3, ... ,βm}. (3) 
 

The element of an adaptive optics system, which 
directly governs the process of compensation for 
nonstationary phase aberrations, is the controlled mirror. 
The mirrors that have been developed up to now can be 
divided3 into  the flexible and segmented ones. 
Membrane mirrors, which have the response functions, 
localized in the vicinity of an actuator are distinguished 
among flexible mirrors. Flexible mirrors with the 
response functions close to the system of Zernike 
polynomials are developed on the basis of piezoelectric 
plates.  Notwithstanding the variety of mirrors, in the 
case of a fast response when dynamic errors can be 
ignored, the problem of optimization is reduced to 

minimization of the rms error variance σ2
a of the wave 

front approximation and variance of the noise error σ2
n 

 

min(σ2
a + σ2

n). (4) 
 

In this problem the most difficult is the assessment 
of noise error influence on the efficiency of the adaptive 
system operation with noise of different origin in 
control channels.  In this case it is reasonable to use 
Strehl ratio as the efficiency criterion.  But as was 
pointed out in Ref. 4 Strehl ratio can be used only 
when the rms error is less than λ/8 $ λ/16, that 
corresponds to the inequality 

 

σ2
a + σ2

n < λ/8, (5) 
 
where λ is the wavelength of optical radiation.  

At present the problem on calculation of Strehl 
ratio has been solved only for the case when n is a 
Gaussian noise2. In the adaptive optics system vector Y 
is formed based on the intensity distribution analysis. 
Therefore the noise statistics obeys the Poisson law.5 
Development of a corresponding algorithm allows one 
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to assess the influence of this noise on the efficiency of 
adaptive optics system. 

Thus, at present the derivation of analytical 
equation for the Strehl ratio of a multidither adaptive 
optics system is an important problem. 

 
2. DERIVATION OF THE BASIC RELATIONSHIPS 

 

Let us consider the following formulation of the 
problem. The adaptive optics system with a 
multichannel phase modulation6 focuses radiation on a 
point reflector (Fig. 1). Signals proportional to the 
intensity gradient (Eq. (3)) are detected at the output 
of band-pass filters. Control signals are transferred to 
the input of the subsystem of generation of control 
forces. The control forces are applied to the input of 
the adaptive mirror. Let us assume that statistical 
characteristics of noise α1, α11, α2 at the output of 
filters are known a priori. Calculating parameters of 
the adaptive optics system we can assess these 
characteristics by the well-known methods.5  

 

 
FIG. 1. Adaptive optics system with a multichannel 
phase modulation: L is a lens, TA is the turbulent 
atmosphere, PR is a point reflector, BE is a beam 
expander, AM is an adaptive mirror, UCSG is a unit 
of control signal generation, PhD is a photodetector. 

 

In Refs. 1 and 2 the multidither algorithm is 
considered in which the set of band-pass filters detects 
the signal 

 

xij = ∑
j=1

m

 sin(βi $ βj), (6) 

 

where xij is the control signal at the jth channel at the 
ith step. 

The multidither algorithm allowing for the second 
term of expansion (1), according to Eq. (6) faces 
certain difficulties associated with the nonlinear 
dependence of the criterion of a system efficiency on 
the control coordinates and with the dependence of a 
control signal in each control channel on the control 
signals in other channels. In Refs. 6, 7, and 8 it was 
shown that in this case the most efficient is the 
following algorithm: 

 

Ui+1 = Ui + C$1 Yi , (7) 
 

where Ui is the phase vector at the ith  step of the 
adaptive control, C is the m×m matrix of coefficients.  
The matrix elements cnk = m when n = k and cnk = $1 
when n ≠ k. C$1 is the matrix inverse to the matrix C. 
The elements of this matrix c′nk = 2/(m + 1) when 
n = k and c′nk = 1/(m + 1) when n ≠ k. 

Let us consider the following equation that allows 
for the noise in the control channels of the adaptive 
optics system: 
 

Ui+1 = Ui + C$1 (Xi + n). (8) 
 

The moments α1, α11, α2 of the random values n 
are known a priori. Taking into account the linearity of 
the algorithm and additive character of noise let us find 

the corresponding moments αu
1, αu

11, αu
2 of U at X = 0. 

From here on a superscript of a moment denotes 
random quantity and a subscript denotes the order of 
the moment. Thus the first-order moment is 

 

αu
1 = 〈 

1
m + 1 (2n1 + n2 + n3 + ... + nm)〉 = α1. (9) 

 

From here on angular brackets denote averaging 
over an ensemble. Similarly we can find the moments 

 

αu
2 = 〈 

1
m + 1 (2n1 + n2 + n3 + ... + nm)2〉 = 

 

= 
(m + 3) α2 + (m2 + m + 2) α11

(m + 1)2  ; (10) 

 

αu
11 = 〈 

1

(m + 1)2 (2n1 + n2 + n3 + ... + nm) × 

 

× (n1 + 2n2 + n3 + ... + nm)〉 = 
 

= 
(m + 2) α2 + (m2 $ 2m + 3) α11

(m + 1)2  . (11) 

 

Once αu
1 and αu

2 are known, it is easy to find, in 
the multidither system, the noise variance at the output 
of the unit of the control signal generation:  

 

Dout = αu
2 $ (αu

1)
2 = 

 

= 
(m + 3) α2 + (m2 + m + 2) α11 (m + 1)2 α1

(m + 1)2  . (12) 

 

Let us consider Eq. (11) in more detail. It is 
evident that the variance Dout is minimum when 

 αu
11, αu

1 → 0, i.e., when uncorrelated noise with zero 
mathematical expectation is present in the control 
channels. Obviously, thermal Gaussian noise well 
satisfies these conditions. Indeed, if m >  > 1 

 

lim
α11,α1→0

 Dout = 

 

= 

(m + 3)α2 + (m2
 + m + 2)α11 + (m + 1)2α1

(m + 1)2  ≈ 
α2

(m + 1) . (13) 
 

In the case when only shot uncorrelated Poisson 
noise is present in the control channels, the variance 
Dout significantly increases 
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lim
α11→0

 Dout = 

= 

(m + 3) α2 + (m2
 + m + 2) α11 + (m + 1)2

 α1

(m + 1)2  ≈ α1. (14) 

 

The correlation coefficient of the output signal αu
11 

is nonzero even if the input noises n are uncorrelated.  
 

lim
α11→0

 αu
11 = 

(m + 2) α2 + (m
2

 $ 2m + 3) α11

(m + 1)2  ≈ 

α2
(m + 1) . (15) 

 

The main conclusion that can be drawn from the 
analysis of Eq. (12) is that  even in the case of 
uncorrelated noise at the input of the control signal 
generation unit, noise at the input of adaptive mirror is 
always correlated.  

Let us derive an equation for the Strehl ratio of an 
adaptive optics system. Assume that the plane wave 
front is incident on the surface of an adaptive mirror. 
Due to focusing in vacuum the spherical wave is formed 
in the plane of an adaptive mirror. This wave converges 
at the focal spot. According to the Huygens-Fresnel law 
the complex amplitude in the focus is 

A = 
S

⌡⌠ 

 

 A0 d
2r, (16) 

 

where `0 is the complex amplitude of the wave 
emitted, which is assumed to be constant within the 
aperture of the optics system, s is the area of the 
adaptive mirror aperture.  

If the emitted wave front is distorted due to the 
influence of noise vector n on the control signals, its 
deviation from the ideal wave front is ϕ(r).  Actually, 
the amplitude at the focus is  

 

A′ = 
S

⌡⌠ 

 

 A0 exp(ϕ(r))d2r. (17) 

 

Because the Strehl ratio is the ratio of intensity at 
the focal spot of a real system to the intensity in a 
system without aberrations it can be written as 

 

St = 
I
I0

 = 
〈⏐A′ A′*⏐〉
⏐A0 A*0⏐

 , (18) 

 

where I0 is the radiation intensity at the lens focus of 
an ideal system, I is the intensity at the lens focus in 
the presence of noise. 

Equation (18) can be re-written in the following 
form: 

 

St = 

1

s2 ⌡⌠    ⌡⌠ 
s

〈exp {i ϕ(r1) $ i ϕ(r2)}〉 d2r1 d2r2 =  

 

 

= 
1

s2 ⌡⌠    ⌡⌠ 
s

〈
⏐A[cos(ϕ(r1))+isin(ϕ(r1))] A[cos(ϕ(r2))$isin(ϕ(r2))]⏐

⏐A A⏐
〉d2r1 d2r2 = 

 

 = 
1

s2 ⌡⌠    ⌡⌠ 
s

〈 [cos2 (ϕ(r1) $ ϕ(r2)) $ sin2 (ϕ(r1) $ ϕ(r2))]〉 d2r1 d
2r2.  (19) 

 
Because the terms ϕ(r1), ϕ(r2) are small, the 

second summand in Eq. (19) can be neglected. 
Expanding Eq. (19) into a Taylor series and keeping 
only the first two terms we obtain 

 

St = 1 $ 
1

s2 ⌡⌠    ⌡⌠ 
s

〈(ϕ(r1) $ ϕ(r2))
2〉

2  d2r1 d
2r2. (20) 

 
For further analysis let us introduce into the P-

space a set of orthonormal functions Z with a scalar 
product 

 

{zi(r) zj(r)} = ⌡⌠
s

 zi(r) zj(r) d
2r 

 

and with the following condition of orthonormality: 
 

{zi(r) zj(r)} = ⎩
⎨⎧
0   for i ≠ j
1   for i = j (21) 

 

To describe the surface of an adaptive mirror we 
use the system of response functions Si(r) from the P-
space 

 

ϕ(r) = ∑
i=1

m

 Si(r) xi, (22) 

 

where ϕ(r) is the mirror response to the vector of 
control signals X. By substitution of Eq. (22) into 
Eq. (20) we obtain 
 

St = 1 $ 

1

2s2 ⌡⌠    ⌡⌠ 

s

〈
⎝⎜
⎛

⎠⎟
⎞∑

i=1

m

 Si(r1) ni

 
$
 
∑
j=1

m

 Sj(r2) nj

2

〉 d2r1d
2r2.  

 (23) 
 

3. SEGMENTED MIRROR 
 

Let us consider Eq. (22) for a segmented mirror in 
more details. The system of response functions Ss of  
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this mirror satisfies the condition (20). For this 
functions we obtain 

 
Ssi(r) = 1   when   r ∈ Ωi, (24) 
 
where Ωi is the area of the ith mirror subaperture, 
Ωi = s/m. 

The Strehl ratio can be written in the following 
form: 

 

St = 1 $ 
1

2s2 ⌡⌠    ⌡⌠ 
s

〈 
⎣⎢
⎡

⎦⎥
⎤∑

i=1

m

 Ssi(r1)
 
ni

2

$ 

 

$ 2 
⎣⎢
⎡

⎦⎥
⎤∑

j=1

m

 Ssj(r2) nj ∑
i=1

m

 Ssi(r1)
 
ni

2

+ 

 

+ 
⎣⎢
⎡

⎦⎥
⎤∑

j=1

m

 Ssj(r2) nj

2

〉 d2r1 d
2r2. (25) 

 
Considering Eq. (22) and assuming s = Ωim we 

obtain 
 

St = 1 $ 
1
2 

⎣
⎢
⎡

⎦
⎥
⎤αu

2 
mΩ ∑

i=1

m

 Ωi $ 
2αu

11 
mΩ  ∑

i=1

m

 Ωi $ 
αu

2 
mΩ ∑

i=1

m

 Ωi  = 

 

= 1 $ (αu
2 $ αu

11), (26) 
 

where αu
2, αu

11 are moments of the random variable U 
defined with account for Eqs. (8), (9), and (10).  

In accordance with the properties of moments9 
 

αu
2 $ αu

11 = (κ2 + κ2
1) $ (κ11 + κ2

1) = κ2 $ κ11, (27) 
 

where κ2, κ1, κ11 are corresponding cumulants of the 
random variable U. 

Finally, considering the latter equation, we can 
write Eq. (26) in the following form 

 

St = 1 $ (κ2 $ κ11). (28) 
 

Substituting Eqs. (8), (9), and (10) into Eqs. (26) we 
obtain the following dependence of the Strehl ratio of 
an adaptive optics system on the statistic characteristics 
of noise at the output of band-pass filters as 
 

St = 1 $ (αu
2 $ αu

11) = 1 $ [α2 + (3m $ 1) α11]/(m + 1)2.  
 (29) 
Equation (29) can be written in the form convenient 
for practical calculations 
 

St = 1 $ (Dout + m2 $ k), (30) 
 
where Dout, m, and k are the variance, mathematical 
expectation, and a noise correlation coefficient at the 
input of the adaptive mirror; 

 

Dout = αu
2 $ (αu

1)
2;    m = αu

1;    k = αu
11. 

 

Obviously, assuming that m, k = 0 the well-known 
equation2 for the Strehl ratio of uncorrelated Gaussian 
noise can be obtained 

 

St = 1 $ Dout. (31) 

 
4. FLEXIBLE MEMBRANE MIRROR 

 
The main difficulty in obtaining relations 

convenient for calculations is that the response 
functions of a flexible mirror do not satisfy the 
conditions of Eq. (21). Usually10 such functions are 
represented in the following form: 

 

Smi = exp($ a(r $ ri)
b), (32) 

 
where a and b are construction factors of a membrane 
mirror. 

For further analysis let us introduce the matrix S 
of the membrane mirror response8: 

 

1/c 
S

⌡⌠ 

 

 Smi Smj d
2r = Sij, (33) 

 

where c is the normalizing factor, chosen in the way to 
make the diagonal elements of the matrix equal to 
unity: Sii = 1, i = 1, m. 

The Strehl ratio can be written in the following 
form: 

 

St = 1 $ 
1

2s2 ⌡⌠    ⌡⌠ 
s

〈 
⎣⎢
⎡

⎦⎥
⎤∑

i=1

m

 Smi(r1)
 
ni

2

 $ 

 

$ 2 
⎣⎢
⎡

⎦⎥
⎤∑

j=1

m

 Smj(r2) nj ∑
i=1

m

 Smi(r1)
 
ni

2

+ 

 

+ 
⎣⎢
⎡

⎦⎥
⎤∑

j=1

m

 Smj(r2) nj

2

〉 d2r1 d
2r2, (34) 

 
where Smj is a response function of a flexible membrane 
mirror. 

Allowing for Eq. (33), the Eq. (34) is written as 
 

St = 1 $ 
⎣⎢
⎡

⎦⎥
⎤αu

2 
1
m ∑

i=1

m

 ∑
j=1

m

 Sij $ αu
11 

1
m ∑

i=1

m

 ∑
j=1

m

 Sij . (35) 

 
By introducing for matrix elements the operator of 

summation sum(∗), Eq. (35) can be written in a 
compact matrix form 

 

St = 1 $ ⎣
⎡

⎦
⎤(Dout + m2 $ k) 

sum(S)
m  = 

 

= 1 $ 
⎣
⎡

⎦
⎤α2 + (3m $ 1) α11

(m + 1)2  
sum(S)

m  . (36) 
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In this formula Eq. (29) has been taken into 
account.  It is obvious that, if instead of S we 
substitute the unit matrix into Eq. (36) which is a 
response function of a segmented mirror, we obtain 
equation (30): 

 

lim
sij→0
sii→1

 
⎩
⎨⎧

⎭
⎬⎫1 $ ⎣

⎡
⎦
⎤(Dout + m2 $ k) 

sum(S)
m   = 

= 1 $ (Dout + m2 $ k). (37) 
 

Thus Eq. (37) is a generalization of Eq. (29) that 
describes a flexible membrane mirror. Analyzing Eq. 
(37) one can conclude that Strehl ratio of an adaptive 
flexible mirror depends significantly on the position of 
actuators and on the form of response functions. The 
obtained relation permits one to assess the efficiency of 
adaptive mirror with different types of actuator 
geometry at the preliminary stage of designing.  

Using Eq. (29) it is possible to assess the influence 
of Gaussian both correlated and uncorrelated noise as 
well as Poisson noise on the value of Strehl ratio. It is an 
important advantage of this equation. Thus, for example, 
in the case of uncorrelated Poisson noise we obtain  

 

St = 1 $ (λ + λ2) (sum(S)/m), (38) 
 

where λ is the parameter of the Poisson distribution. 
 

5. CONCLUSIONS 
 

The analysis of Eqs. (29), (37), and (38) permits 
one to draw some important conclusions. The main 
factor that causes the decrease of Strehl ratio of a 
multidither adaptive optics system with a multichannel 
phase modulation is the correlation coefficient α11 of 
noise at the output of the system of band-pass filters. It 
seems so that, in order to decrease the influence of 
noise in the control channels on the performance of the 
adaptive optics system with a multichannel phase 
modulation, special attention should be paid to the 
frequency differentiation in the control channels.  

It should be noted that equations (29), (37), and 
(38) allows one to assess the contribution of an 
individual moment into the value of the Strehl ratio.  
 

Also we have illustrated that Strehl ratio is 
independent of the moment α1 which has the physical 
meaning of mathematical expectation of the noise  
vector. It likely can be explained considering that the 
Strehl ratio is independent of the phase variations 
averaged over the aperture of the adaptive optics 
system. Choosing the construction characteristics of a 
membrane adaptive mirror one should try to obtain its 
response matrix as close to the unit matrix as possible 
I → S. In this case Strehl ratio is maximum. 

It would be a mistake to conclude from the 
analysis of Eqs. (29), (37), and (38) that St → 1 at 
m → ∞, because α2 and α11 are the functions of m and 

α1 ∼ m4 as it follows from Ref. 2. Choosing the number 
of control channels one should take this fact into 
account in the analysis of the whole adaptive optics 
system. 
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