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We describe in this paper the mesoscale models of cloudiness evolution 
and impurity dispersal based on the sets of complete hydrothermodynamics 
equations and turbulent diffusion equations, respectively.  The evolution of 
moisture and temperature fields is described using functions, invariant with 
respect to water phase transitions namely, the functions of specific moisture 
content and equipotential temperature.  Physical content of the models due to 
the use of parametrization schemes of the main processes on a subgrid scale as 
well as their high spatial resolution have made possible their use for 
simulation and forecasting of cloudiness and fields of aerosol formations. 

 

INTRODUCTION 
 
Solution of many scientific and applied problems 

is connected with the forecast of dynamics of 
cloudiness and fields of aerosol formations (AF) of 
natural and anthropogenic origin.  An approach, 
based on the use of mathematical models built on the 
base of hydrothermodynamics equations taking 
account for one or another assumptions, is accepted 
as most promising and producing better practical 
results including those for mesometeorological scale.  
The physical concept of the atmosphere as a 
compound medium is a basis for constructing the 
models of such a kind.  In this case the parametric 
consideration of the existing feedbacks enables one to 
perfect the physical content of the models. 

It is well known that a great variety of factors 
affects the formation of cloudiness and aerosol fields.  
In connection with the intense anthropogenic 
pollution of the atmosphere, the above-mentioned 
factors include both natural and anthropogenic 
perturbations.  They are more pronounced in the case 
of aerosols that strongly absorb shortwave solar 
radiation (smoke, dust, soot).  The reason is that 
highly absorbing aerosol causes the horizontally 
inhomogeneous volume heat release, which makes a 
great impact on dynamic characteristics of the 
atmosphere. 

Thus, the prediction of AF evolution is not only 
an independent problem, but it should be used for 
taking into account nonadiabatic heat fluxes when 
predicting hydrometeorological fields.  The approach 
proposed to the forecast of cloudiness and aerosol 
fields is based on the model of moist atmosphere, 
where the model of the pollution dispersal makes up 
an individual block.  This paper is a continuation of 
the work done in Ref. 1. 

BASIC EQUATIONS OF THE MODEL 
 

Let us consider a limited area Ω×Ωt, 
corresponding to the typical spatiotemporal scales of 
simulated mesoscale atmospheric processes, where 
Ω = {0 ≤ x ≤ X; 0 ≤ y ≤ Y; z0 ≤ z < zH} and 
Ωt = {0 ≤ t ≤ tk}.  To describe the evolution of cloud 
fields and thermodynamic regime of the atmosphere, 
a model has been selected, which is based on the set 
of complete equations of hydrothermodynamics.  In 
this case, for correct description of water vapor 
condensation processes and temperature evolution we 
use the functions, invariant relative to water phase 
transitions, namely, the equipotential temperature Ï 
and specific moisture content S, see Ref. 2.  Taking 
this fact into account, in the left system of Cartesian 
coordinates (the x-axis is directed to the east, y-axis 
– to the north, and z-axis – vertically upward) the 
model equations are: 

a) equations of motion: 
 

∂ρu
∂t  = $ div(ρuV) $ 

∂P
∂x + ρfv $ 

∂τxz

∂z  + ρFu, (1) 
 

∂ρv
∂t  = $ div(ρvV) $ 

∂P
∂y $ ρfu $ 

∂τyz

∂z  + ρFv; (2) 

 

b) equation of continuity 
 

div(ρV) = 0;   (3) 
 

c) equations of heat flux and humidity transfer: 
 

∂o
∂t  = $ Vgrado + 

εr
ρCp

 $ 
1

ρCp
 
∂Q

π

∂z  + F
π ,  (4) 

 

∂S
∂t  = $ VgradS 

1
ρ ⎝
⎛

⎠
⎞∂QK

∂z  + 
∂QS

∂z  + FS,  (5) 
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where 
 

Ï = (P0/P)R/Cp[T + (L/Cp)q]; (6) 
 

S = 
⎩
⎨⎧

>

qm + δ   in clouds,
q    outside the clouds;

  (7) 

 

d) equations of static and state: 
 

∂P
∂z  = $ ρg,    (8) 

 

P = ρRTv. (9) 
 

In Eqs. (1)–(9) the following designations are 
used: t is time; V = (u, v, w) is the velocity vector 
with the components along the axes x, y, and z; ρ is 
the air density; P is the pressure; f is the Coriolis 

parameter; Q
π
 and QS are the vertical turbulent 

fluxes of heat CpÏ and moisture content S; QK is the 

sedimentation flux of cloud elements; ε
r
 is the 

radiation heat flux, Cp is the specific heat of air at 
constant pressure; Tv is the virtual temperature; δ is 
the specific water content of cloudiness; q is the mass 
fraction of water vapor; qm is the saturated value of 
water vapor mass fraction; L is the specific heat of 
water vapor condensation; g is the acceleration of 
gravity; P0 = 1000 GPa; R is the universal gas 
constant; Fu, Fv are the projections of turbulent 

friction force on the x and y axes, respectively; F
π
, 

FS are the components taking into account the rate of 
variation of the corresponding meteorological 
parameter due to small-scale horizontal turbulent 
diffusion; τxz and τyz are the components of the 
vector of vertical turbulent momentum flow. 

In clouds, where water vapor is saturated, the 
set of equations (1)–(9) is complemented by the ratio 

 

q = qm = 0.622 [E(T)/P], (10) 
 

where E(T) is the pressure of saturated water vapor 
at temperature T.  An important advantage of the set 
of equations (1)–(9) is that the phase heat fluxes and 
transitions of atmospheric water vapor are allowed 
for directly by Eqs. (4) and (5) due to the invariance 
of the functions Ï and S relative to phase transitions 
of the atmospheric moisture. 

The boundary conditions relative to vertical 
coordinate are traditional, providing conservation of 
integral mass of the atmosphere: ρw = 0 at z = zH and 
w = V∇z0 at z0.  The procedure of formulation of side 
boundary conditions is the following.  In the 
boundary zone 120 km wide (six steps of grid) we use 
“viscous absorption” (the artificial viscosity with a 
large value of the viscosity coefficient, 106 m2/s, is 
introduced) and weighted tendencies3: 

 

∂A
∂t j

 = χj 
∂Am

∂t j
 + (1 $ χj)

∂Af

∂t j
, (11) 

 

where χj is the weighting factor with the following 
values: χj = {0.0, 0.4, 0.7, 0.9, 1.0}, respectively, for 
j = {0, 1, 2, 3} and j > 3, j is the number of a grid 
point along the normal from the boundary; Am is the 
element value in the inner area; Af is the background 
value of the element A. 

 
PARAMETRIZATION OF THE SUBGRID-SCALE 

PROCESSES 
 

For the set of equations (1)–(10) to be closed, 
we briefly describe the basic peculiarities of 
parametrization processes of subgrid scale, which are 
described in detail in Ref. 4. 

The horizontal turbulent exchange is considered in 
the framework of the theory of nonlinear turbulence.5  
The terms Fu and Fv in Eqs. (1) and (2) are: 

 

Fu = 
∂τxx

∂x  + 
∂τxy

∂y  ,     Fv = 
∂τxy

∂x  + 
∂τyy

∂y  . (12) 

 

The components of tension are the following: 
 

τxx = $ τyy = μD1,    τxy = τyx = μD2,  (13) 
 

where  
 

D1 = ∂u/∂x $ ∂v/∂y,   D2 = ∂v/∂x $ ∂u/∂y. 
 

For determining the horizontal turbulence coefficient 
μ we use the formulation of the closing scheme in the 
form6 

 

μ = kl2(D1 + D2).   (14) 
 

Here k is the parameter allowing for variation (in the 
numerical experiments) of the level of model 
dissipation; l is the value, characterizing the scale of 
the simulated process, proportional to the step of the 
grid region Δn: 

 

l = (k0/ 2)Δn, 
 

where k0 = 0.4 is the empirical constant.4   

The components F
π
 and FS in Eqs. (4) and (5) 

are determined as: 
 

F
π
 = μ∇2o,    FS = μ∇2S. (15) 

 

Vertical turbulent fluxes Q
π
 and QS in Eqs. (4) 

and (5) and the components of the vector of 
turbulent tension of friction in Eqs. (1) and (2) 
outside the surface sublayer (z > zh) are presented 
using the expressions: 

 

Q
π
 = $ Cpρν 

∂o
∂z  ,  QS = $ ρν 

∂S
∂z ,   

  (16) 

τxz = $ ρν 
∂u
∂z ,  τ

xy = $ ρν 
∂v
∂z ,  

 

where ν is the vertical coefficient of turbulence. 
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Calculations of ν in the boundary layer are made 
taking into account the nature of atmospheric 
stability and vertical wind gradient; as to the 
calculations of ν at altitudes above the boundary 
layer, we consider only the vertical wind shear.4 

In the boundary sublayer (z < zh, zh ~ 100 m) the 
components of vector of tension τ are determined as 
follows: 

 

τh = $ CD ρ⏐Vh⏐Vh, (17) 
 

where CD is the friction coefficient (in the numerical 
experiments this coefficient is equal to CD = 2.5⋅10$3); 
the index h assigns the element value to the level zh. 

The values of vertical heat fluxes Q
π
 and 

moisture fluxes QS above the sea surface in the layer 
z < zh are estimated on the basis of the aerodynamic 
method,7 and above the dry land these fluxes are 
evaluated using the equations of heat balance of the 

underlying surface.  The calculations of Q
π
 and QS 

are described in Ref. 4. 
The account for subgrid convection and 

stabilization of thermodynamic state of moist 
atmosphere in the model (1)–(10) is based on the 
“convective adaptation” method.  The iteration 
(adaptation) procedure of unstable-stratified layer is 
used.  In this case the critical value of the 
temperature vertical gradient is determined by 
relative humidity of air.4 

The flux of cloud elements under the effect of 
gravity Qk is described by the relationship2: 
 

Qk = $ ρ(S $ qm)~v, (18) 
 

where ~v is the weighted mean (by mass) rate of cloud 
element fall, which is defined as the function of 
vertical cloud extension3: 
 
~v = ~vmexp{ $ β[(z $ zL)/(zU $ zL)]} . (19) 

 

Here ~vm is the maximum value, reached at the lower 
cloud boundary zL; zU is the upper cloud boundary; β 
is the parameter. 

Determination of the radiation heat flux εr in 
Eq. (4) is described in Ref. 4. 

 

MODEL OF IMPURITY DISPERSAL 
 

For describing the process of impurity dispersal 
in the atmosphere, the semiempirical equation of 
turbulent diffusion is taken as a basis.9 

Taking into account the above schemes of 
parametrization of vertical and horizontal turbulent 
exchange we can write: 

 
∂ϕ
∂t  + Vgradϕ $ divS(μ gradS ϕ) $ 

∂
∂z ν 

∂ϕ
∂t  = d + f, (20) 

 
where ϕ = {ϕi, i = 1(1)N} is the vector of specific 
impurity concentrations; ϕi is the concentration of the 

ith impurity; j and d are the vector-functions 
describing the aerosol sources and sinks, respectively; 
the subscript S denotes the operators in horizontal 
directions.  Since the dimensions of most of the sources 
of highly absorbing aerosol are much less than the 
dimensions of the area Ω, i.e., can be considered as 
point ones, one source can be expressed in the form: 
 

f(x, t) = { >Qδ(x $ xi)(t $ ti)  for a pulsed source,
Qδ(x $ xi), for a cw source,

          

(21) 
 

where Q is the intensity of the source at a point with 
coordinates xi = (xi, yi, zi); ti is the time of the pulse 
source existence; δ is the delta-function. When solving 
Eq. (20) we consider parametrically the processes of 
sedimentation, moist washing out, coagulation, and 
self-inductive rise, described in Ref. 1. 

 
METHOD OF SOLUTION 

 
Calculation of the impurity concentration is a 

procedure of a successive solution of Eq. (20) for 
every component of the vector ϕ.  Numerical 
calculations by models (1)–(10) enables one to 
describe the evolution of cloud fields. 

The cloudiness is determined in the layers where 
S ≥ qm.  Quantitative characteristics, namely, the 
water content δ, are determined from the relationship 
δ = S $ qm(T).  In clouds (S ≥ qm) in the numerical 
calculations it is assumed that δn+1 = δn + Δδn+1 and 

 

Δδn+1 = ΔSn+1 $ 0.622 
L

RP
 
E(Tn+1)

(Tn+1)2  ΔTn+1. (22) 

 
The temperature is determined from the relationship: 
Tn+1 = Tn + ΔTn+1, where 

 

ΔTn+1 = Δon+1

⎣
⎡

⎦
⎤

⎝
⎛

⎠
⎞P0

P

0.286 

+ 0.622 
L2

RCpP
 
E(Tn)

(Tn)2

$1

. (23) 
 

 
Outside the clouds (S < qm): 

 
ΔTn+1 = Δon+1 $ (L/Cp) qn+1,  δn+1 = 0. (24) 
 
In Eqs. (22)–(24) the superscripts denote the 
solution at a proper time layer. 

The models formulated provide numerical 
calculations.  For this purpose the grid region Ωh is 
introduced into the region Ω.  In the vertical direction 
the grid has 19 levels (counting levels 110, 540, 990, 
1460, 1950, 2470, 3010, 3590, 4210, 4870, 5570, 6340, 
7190, 8190, 9160, 10360, 11780, 13610, and 16180 m) 
and separating layers, which, based on the data of the 
standard atmosphere, are about 50 GPa thick.  In a 
horizontal plane the grid step Δn is taken to be equal to 
20 km, and its size is 75×50 nodes.   

The numerical solution is based on the splitting of 
Eqs. (1)–(10), (20) according to physical processes and 
coordinates.  At the first step Eqs. (1)–(10) are solved 
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in two stages.  At the first stage the set of equations 
describing the adaptation of meteorological fields is 
solved with the use of an evident scheme “forward-
backward”.  At the second stage the problem of 
advection is solved using the Lux-Vendroff scheme 
with the initial conditions, obtained as a result of an 
adaptation step.  At the second step the model of 
impurity transfer (20) is applied.  An evident TVD 
scheme is used at the advection step as well as the 
Krank-Nikolson scheme at the diffusion step. 

 
CONCLUSION 

 
Models of the atmosphere and aerosol transfer 

represent an imitation simulating complex.  When 
entering the results of an objective analysis of 
mesometeorological fields (such an algorithm is cited as 
an example in Ref. 10) to the complex input and when 
performing the procedure of initiating meteorological 
fields, as well as the initial characteristics of aerosol 
formations and sources, it is possible to develop the 
prediction of evolution of cloudiness and aerosol 
formations. Based on the above-mentioned model we 
have studied the processes of wave cyclogenesis and 
formation of frontal cloudiness11 as well as the 
evolution of aerosol formation of 150×150 km2 size. 

The results of numerical experiments point to a 
possibility of using the models in theoretical 
investigations. 
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