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It is shown that some methodical problems, responsible for speculations 
about aureole scattering of light, can be solved by using the asymptotic 
electrodynamics techniques. 

 

1. PREFACE 
 

The processes, occurring under the exposure of 
aerosol to high–power laser radiation (evaporation 
of liquid and solid particles, combustion of the 
latter, simple heating, i.e., the particles conversion 
into sources of heat in a gaseous medium, etc.), 
result in formation of aureoles, i.e. such areas 
around a particle, where the thermodynamic 
properties differ from those in the background 
atmosphere.  In addition, such aureoles are 
certainly the optical inhomogeneities, influencing 
the light propagation.  The detailed analysis of 
these problems can be found in monographs.1–3  

However, here arises rather a principal problem, 
whose essence is perfectly well outlined in Ref. 3.  
The consideration of aureole as an optically soft large 
particle is rather obvious, and means that 

 

⏐m $ 1⏐ <  < 1, V >  > λ3. (1) 
 

Here λ is the wavelength; m is the relative complex 
refraction index, V is the particle volume. Solution 
to the Maxwell equation for conditions (1) is well 
known, and some its details will be mentioned in 
Section 2. 

However, if these results are used formally, the 
parameter 

 

η = 
coefficient of extinction by particle$aureole
geometric cross section of aerosol particle

 

 
tends to infinity, as the aureole radius R increases, 
rather fast. (As follows from the estimates given in 
Ref. 3, R becomes equal to ≈ 100 μ as early as 10–4 s, 
while the thermodynamic processes inherently require 
times of 10–3–10–2 s, for example η ≅ 200 at 
R ≅ 350 μ.  Analogous data on the anomalous growth 
of η are presented in Ref. 3 and references therein.  
Bukatyi and Kronberg recently have also obtained 
similar data.)  Another important point is that the 
estimate η = 0(lnR) is a consequence of a seemingly 
correct solution. 

At the same time, the experimental data, 
reviewed in Refs. 2 and 3, do not reveal similar 
growth of η.  Some general ideas about such a drastic 
disagreement was proposed in Ref. 3, but they 
obviously are beyond the scope of electrodynamics. 

The conviction that the problem, arising within 
the scope of electrodynamics, must be resolved just 
within this scope causes us to undertake the below 
analysis.  It is quite realistic that the final result 
could be deduced merely from pure qualitative 
reasoning but we believe that the mathematical and 
methodical scrupulousness will not be excessive. 

 

2. SOME RELATIONSHIPS  

FROM THE ELECTRODYNAMICS 
 

The vector analog of the Kirchhoff formula 
well–known (see, e. g., Ref. 4) in scalar optics is the 
expression5: 

 

E(r) =$ 

1

4π

σ

σ

d

( )

∫ {(ν grad′G) E(r′) $ ν (E(r′) grad′G)+ 

 

+ G(ν × rot′ E(r′)) + (E(r′) ν) grad′G} (2) 
 

for the spectral component E of the electric field 
strength at the point r in vacuum.  The Green’s 

function G(r⏐r′) = ⏐r $ r′⏐$1 exp(ik⏐r $ r′⏐); k = 2π/λ; 
the closed surface σ with the normal ν to dσ encloses 
r; r′ ∈ σ; grad′ etc. designate the differentiation with 
respect to r′.  The system of coordinates (with the 
unit vectors e1, e2, e3 and the x, y, z components of 
the vector r) is shown in Fig 1, where σ consists of 
the plane z = 0 closed by the hemisphere with the 
radius  b → ∞; infinitely distant areas of σ certainly 
do not contribute into Eq. 2. 
 

 
 

FIG. 1.  The unit vectors e
r
, eθ, and eϕ are set as in 

Fig. 2. 
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Let us consider now the field (hereinafter 
referred to as the external wave) of the form 

 

E0(r) = E(0)(x, y) exp(ik k0 r),   E
(0) k0 = 0  (3) 

 

with the unit vector k0 of the Pointing vector.  As to 

the function Å
(0)

(õ, ó), we believe, as usually, that it 
changes rather slowly as compared to exp from 
Eq. (3).  Actually, in our problem the sole purpose of 

using Å
(0)

 is to underline the limitedness of a ray: 

e
(0) ≠ 0 within  ∑0 (see Fig. 1). 

Substitution of Eq. (3) into Eq. (2) gives only 
condition kr ≡ k ⏐r⏐ >  > 1, which is fulfilled almost 
automatically, and certainly the Maxwell equations 
for vacuum transform Eq. (3) into the expression 

 

E0(r) = $ 
ik

G x y
z

2
0 0 0 0 0

π

ϕ ϕ(( ( ) ( )) ) d d

( )

e e E e e E+∫ =

Σ'

  

  (4) 
 

with the addition that ∑′ ∋ ∑0 (see Fig. 1).  A more 
detailed consideration of Eq. (4) one can find in 
Ref. 6. 

Figure 2 illustrates the standard statement of the 
problem on scattering of the wave (3) by a particle 
with the volume V.  The latter corresponds here to 

an aureole.  For the internal (r ∈ V) field e (j) there 
is the integral equation4, 5, 7, 8 

 

E
(j)(r) = E0(r) + rot rot d

( )

r′
−∫

V

m 1

2π
 G(r⏐r′) E(j)(r′)  

  (5) 
 

equivalent to the Maxwell equations, and the first 
asymptotic of Eq. (1) is already included here.  It 
happens so9 that the asymptotic of Eq. (1) allows one 
to neglect the influence of the initial electrodynamic 
conditions on the change of light polarization, i.e., 
the scalar description is applicable.  The iterations of 
Eq. (5) can be therefore calculated using the effective 
approach from Ref. 10, with the following outcome: 
 

E
(j)(r) = E0(r) exp ik m x y z z

z

( ( , , ) ) d )′ − ′

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−∞

∫ 1  . (6) 

 

It should necessarily be emphasized that in 
Ref. 11 the result of the form (6), referred there to as 
the anomalous diffraction, is discussed only based on 
qualitative concepts.  The above example 
demonstrates its derivation directly from the 
Maxwell equations.  Let us also add that Eq. (5) was 
also used in Ref. 2. 

The integral form of the Maxwell equations 
gives us a possibility to express the field Å outside 

the particle through Å
(j)

. For the wave zone 
(kr >>  1)  

 

E(r) = E0(r)+ 

k ikr

r
V

2

2π

exp( )
d

( )

r′∫ (m$1){exp($ i (k0r′))} × 

 

× {e0 (e0 E
(j)(r′)) + eϕ (eϕ E

(j)(r′))} ≡ E0 + Es  (7) 
 

and Ås in Eq. (7) is interpreted as the scattered wave.  
For the wave zone 
 

G(r⏐r′) ≅ (1/r) exp (ikr $ ik(r′ r0)) (8) 
 

with the designations from Fig. 2. 
 

 
FIG. 2.  In this figure, the following designation 
are used: r is the point of observation of the 
scattered wave;  V is the particle;  er, eθ 

, and eϕ 
are the unit vectors of the spherical system for 
coordinates r = ⏐r⏐, θ, and ϕ of the vector r. 
 

Remind also that just the form (7), describing 
the interference of external and scattered waves, 
implies the optical theorem, i.e. the expression for 
the extinction coefficient i in terms of the amplitude 
(the factor before (åõð ikr)/kr in Ås from Eq. (7)) of 
the forward scattered wave (θ = 0).  The function 
Å0(õ, ó) from Eq. (3) introduces some changes 
(overbar denotes the complex conjugation):  

 

i = 
2

01
0

2

2
0

2

k

E E
( ) ( )( ) +

 Im ( ) ( )
( ) ( )

A A1 1

0

2 2

0
0 0E E+

⎛
⎝

⎞
⎠   

 

with the values Aμ = 

⌡⌠ 

 

dr′ (m $ 1) (eμ E
(j)) exp ikz′, 

μ = 1 and 2.  One can appreciate that i can now 
prove to be formally dependent on ∑0 (see. Fig. 1).  
And only for a plane wave, when e 0 = const,  

i = 2k Im
⌡⌠ 

 

dr′ (m $ 1) (exp ikz′) Φ, where Φ is the 

factor after Å0 in (6).  Having substituted the 
explicit form of Φ we obtain 
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i = 2 Re d∫ x′ dy′ (1 $ exp(ik ( )

-

+

m−

∞

∞

∫ 1 dz′)) 

 

automatically with the integration over V.  The last 
equation gives, in particular, specific expressions 
which were used in Refs. 1–3 in the analysis of 
aureole scattering. 
 

3.  THE MAIN FEATURE OF THE AUREOLE 
SCATTERING 

 
Substitution of Eq. (6) into Eq. (7) and some 

simple transformations (again following Ref. 10) yield 
 

Es = e0 (e0 C) + eϕ (eϕ C);  
 

C = (1/r) (exp ikr) 

ik

2π

d∫ x′dy′ (exp(iq1 x′ + iq2 dy′))×  

 

× E(0)(x′, y′) 1 1− ′ ′ ′ − ′

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

−∞

+∞

∫exp ( ( ( , , ) d )ik m x y z z)   

  (9) 
 

with the projections q = k0 – r0 onto the axes å1 and 
å2.  Additional simplification is due to the fact that the 
asymptotic (1) allows neglecting the terms related to 
q3 = (qe3) = 1 – cosθ.  (The physical reason for this is 
the strongly forward peaked scattering phase function.) 

Let us now consider the versions presented 
schematically in Fig. 3.  The structure of the integral 

(9) is quite clear: d

−∞

+∞

∫ z′(...) is, in fact, d

( , )

( , )

z

z x y

z x y

′

′ ′

′ ′

∫
1

2

(...) 

with z1 and z2 from Fig. 2, and then the integration in 
Eq. (9) is performed over the area in the plane z = 0.  
For the case shown in Fig. 3a, it will be the projection 
of “a particle” onto the plane z = 0, the integration 
variables form V, and the first term in {...} in Eq. (9) 
is the usual description of the Fraunhofer diffraction.  
The situation changes drastically for the case (b): now 

⌡⌠ 

 

dx′dy′ is the integration over the beam cross section, 

and relationships (4), (8), and (9) transform the first 
term in Eq. (9) into (– Å0) and now it and the first 
term of Eq. (7) cancel each other.  Now the field 
outside the particle is described by the vector 

 

B(r) = 
exp( )

d

( )

ikr

r

ik

2
0

π

Σ

∫ x′dy′ E0(x′, y′) × 

× exp ik m z ik r x r y

z

z

( ) d ( )− ′− ′+ ′

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

∫ 1
01 02

1

2

. (10) 

 

In Eq. (10) the property of k0 from Eq. (3) is taken 
into account as well as the designations from Figs. 1 
and 2. 

The last circumstance certainly changes the 
interpretation.  There is no diffraction on the 
particle contour and the suspicion arises, which 
however merges into a belief, that only the 
geometric optics rays remain.  This fact will be 
demonstrated, and quite clearly, later on.  Now we 
would like only to note that, as it follows from the 
remark on the extinction coefficient in the end of 
Section 2, with the disappearance of Å0 from 
Eq. (7) the optical theorem also disappears together 
with the formal consequences for i. 

 

 
         a      b 
 

FIG. 3.  Classification of situations for Eq. (9). 
 

We shall make a small retrospective journey into 
the problem on asymptotic (with the main condition 

V >>  λ3) solution of the Maxwell equations before 
explaining the methodical meaning of Eq. (10).  
Under the assumption that inside V the geometric 
optics is valid, for the field outside V (we already 
consider the case shown in Fig. 3b) the integral form 
(2) yields the following expression  

 

E(r) = 
k2

4π

d∫ x′dy′ d

( , )

( , )

z

z x y

z x y

′

′ ′

′ ′

∫
1

2

(m2 $ 1) × 

 

× E (r′) (exp ikS(r′)) G(r⏐r′). (11) 
 

The eikonal S and the “slow” (as compared to 

åõð(ikS)) factor E enter into this expression.  As 

usually, 
⌡⌠ 

 

dz′ can be treated using the integral of the 

type  J = d

( , )

( , )

z

z x y

z x y

′

′ ′

′ ′

∫
1

2

g(ξ) exp(ikh(ξ)) with the formal 

condition that k → ∞.  If the equation h′(ξ) = 0 has 
no roots on the integration interval, then the result 
of J estimation as the integral of the Fourier type 
will be the following12: 

 

J = 
g z

ikh z

( )

( )

2

2
′

 exp(ikh(z2)) $ 
g z

ikh z

( )

( )

1

1
′

 exp(ikh(z1)). 
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In Eq. (11) S + ⏐r $ r′⏐ plays the role of h, and, 
as follows from the eikonal equation, h′(ξ) = 0 is 
equivalent to mt3 $ R03 = 0.  Here t3 and R03 are the 
components, along the �3 unit vector, of the vectors 
t, normal to the geometric optics ray trajectory, and 
R0 = (r $ r′)/⏐r $ r′⏐. 

The first fine feature is connected with the 
statement that the internal points of V cannot be the 
roots of the last equation; this, methodical, in its 
essence, problem is considered in Appendix (see 
below). 

The other feature is due to the vanishing of g on 
the surface, since m → 1 there.  But if at the surface 
points h′ = 0 also because of m → 1, then once the 
uncertainty is removed, the estimate remains the 
same.  The obvious condition of the latter is t3 = R03; 
by a proper choice of the coordinate system it is easy 
to reach t = R0 with the clear physical meaning: the 
field at the point r is generated by the geometric 
optics ray, which is directed immediately from the 
surface V into r.  It is clear that in the problem 
considered the points z2(x′, y′) are needed. 

One more point to be noted is the construction of 
E. For Eq. (3) and as follows from the geometric optics, 

one should write E = E
(0)�. !(ikz1), that is, the field at 

the “entrance” (for the external wave) side of V. 
If one will follow the above scenario of the 

asymptotic estimate and use again Eq. (7) then 

Eq. (11) will transform into Eq.(10) at S = m

z

d

−∞

∫ dz′ 

with the clear ($∞) taken as the lower limit of 
integration.  And it only remains for us to ensure that 
such a value is truly treated as eikonal. 

The formal aspect of the problem is obvious – the 
values (1/m) gradS, rot((1/m)gradS), ρ(l) = t are 
necessarily to be agreed: the former should give the 
unit vector t, which will determine the ray trajectory ρ 
as a function of its length l; the vanishing of the latter 
will be indicative of the existence of nonintersecting 
elementary rays.  In calculations with the S, written, 
and for the rather acceptable assumption about the 
aureole properties as microscopic (practically the 
constant characteristics at distances of the order of λ), 
ln m ≡ ln(1 + β) ≅ β will appear, and ⏐β⏐ is the obvious 
parameter of smallness in the asymptotic (1).  Under 
such an assumption, the unit vector �3 serves as t, and 
the addition to it is n(β), that is in a good agreement 
with the geometric optics of “soft” media11,13 with its 
practically straight line rays; 

⏐rot(1/m) grad S⏐ = n(β2). 
 

4.  DIFFUSE AUREOLE IN THE TRANSFER 

EQUATION 
 

It is certainly evident that the particle embedded 
in aureole is treated as an actually scattering particle 
with all its diffraction features (scattering phase 
function, optical theorem, etc.) only with a small 
aureole (Fig. 3a). The consequence is also clear: the 

previous “aerosol” form of the transfer equation only 
with the characteristics of “compound” particles. 

Quite different pattern arises with large aureole.  
The previous analysis, in effect, makes it clear that for 
the situation shown in Fig. 3b to take place it is 
sufficient that the aureole size is greater than the width 
of elementary geometric optics ray in the external, with 
respect to aerosol particle, medium.  Of course, the 
situation becomes more certain, when the aureoles from 
different particles overlap each other or each of them is 
greater than the coherence length of the amplitude 

Å
(0)

(õ, ó); meanwhile in the latter case it would be 
interesting to follow experimentally the qualitative 
jump between the cases shown in Figs. 3a and b. 

Section 3 concerns the problem on interaction of 
the field with the system “aerosol particles + aureoles.”  
(Some its fine details are discussed in Ref. 2.)  The 
exact relation (of the form (5) or (7)) between the 

external, e , and internal, e (j), fields via the integral 
over the volume of optical inhomogeneity, immediately 
leads us to the expression e  = e 1 + e 2, where e 1 and e 2 
are the results of integration over the area of a particle 
and an aureole. 

The statement of the exact problem for e (j) with 
the boundary conditions of electrodynamics on the 
interface between media with different complex 
refractive indexes is indicative of the necessity to 

introduce some corrections into e
(j), which would 

occur if the external wave would fall directly upon the 
aerosol particle.  However, some efficient 
simplifications are rather clear here. 

Naturally, the possibility of describing the field 
inside the aureole according to the rules of geometric 
optics and the asymptotic (1) allow us to state that the 

field e (j) for the particle formally remains the same (as 
without aureole), but the relative complex refractive 
index of the particle should be replaced by 

m
(j)/(m(0) + δm(0)); here m(j) and m(0) are the complex 

refractive indexes of the particulate matter and the 

external (not perturbed by aureole) atmosphere; δm(0) 

is change of m(0)  due to aureole of the particle at its 
side exposed to the external wave. It is hardly probable 
that such a substitution affects markedly the optical 
characteristics of the aerosol particle. 

Then, the further processes the light scattered by 
the particle is involved in are governed, as early, by 
the geometric optics and therefore it is sufficient to 
introduce the absorption by “aureole medium” and 
refraction in it into the transfer equation.  Properties of 
the aureole medium itself are determined by the 
problem on medium heating by point sources 
distributed over it with the subsequent averaging over 
the intervals of their statistical parameters. 

The reasoning presented above is summarized in 
the equation for the light intensity I(r, n) I(r, n) at the 
point r and in the direction of the unit vector n: 

 

n grad I = $ (χ + α) I + (multiple scattering by aerosols)  
 
  (12) 
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Here χ designates the sum of aerosol extinction 
coefficient and the molecular atmospheric absorption; α 
is the absorption coefficient of the aureole medium; and 
for n we can write ordinary equation of refraction in 
the same aureole medium. 

Strictly speaking, as it follows from the physical 
meaning of the transfer equation, I is the intensity of 
the elementary geometric optics ray, what emphasizes 
once more the necessity to turn to the situation shown 
in Fig. 3b.  It is clear that when solving Eq. (12), that 
anomalously large extinction of I, which was discussed 
in Section 1, will appear in no way. 

The problem of α in Eq. (12) is independent: the 
value of this coefficient can be calculated directly for 
the aerosol substance evaporated or through the change 
in the refraction index, that can be recalculated into α 
by the dispersion relationships. 
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APPENDIX 

 
Under the assumption of geometric optics 

(with formal k → ∞) the Pointing vector is  
o = 2c (exp($2k Im S)) (E E ) (Re m n), where ñ is 
the speed of light and E = E exp(ikS) was already 
discussed. We now consider the complex 
m = m′ + im′′, and from the equation of eikonal 
gradS = mn the complex character of n = n′ + in′′ 
follows. With the same notes, divo = 

= $2kc (E E 

$

)(exp($2k Im S)) (Re mn)(Im mn)=Q, 
i.e. the amount of heat releasing in a unit volume.  
The definition of Q via e  and the dipole moment leads, 
as early within the scope of geometric optics, to the 
expression Q = kc(E E )(Im ε) (exp($ 2 k Im S)), 

where the permittivity ε = m2. The equations written 
fit the equalities Re mn Im mn = m′m′′ = ε′′/2, which 
commonly are derived from the above listed complex 

parameters and the condition n2 = 1. 
We come back now to the equation mn3 – R03 = 0 

and assume that its root is the point r0 ∈ V, i.e. the 
domain, where the above expressions hold true. In 
our general case, we impose no conditions upon the 
choice of coordinate axes, therefore the third axis can 
 

be believed coincident with the direction o at the point 
r0. Because R03 is real and as follows from the equation 
for o, the projection of Im mn on Re mn equals zero, 
i.e. in fact divo = 0. However, Q ≠ 0, although 
absorption, though weak, always exists,14 and moreover 
the second definition of Q says about its independence 
of the direction of wave propagation. 

Just the contradiction obtained (divo = Q) 
proves the statement about the roots of equation 
h′(ξ) = 0 which was used in Section 3. 
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