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The feasibilities are explored for detection of seats of forest fires using 
spectral infrared radiation measurements under conditions of cumulus clouds from 
space.  This problem is solved by a statistical hypothesis testing method.  A 
decision rule is based on the Neumann$Pearson test.  Statistical models of signal 
(the fire seat emission) and background (the radiation from the underlying surface, 
clouds, and the atmosphere) have been proposed and validated.  Analysis of the 
results obtained shows the feasibility of reliable detection of forest fires over an 
area of about 600 m2 provided that the cloud amount does not exceed 0.5. 

 

INTRODUCTION 
 

At present remote sensing techniques provide 
powerful means for studying the atmosphere from 
meteorological satellites using thermal infrared (IR) 
radiation measurements.  These techniques make possible 
determination of the underlying surface temperature as 
well as detection of areas with elevated temperature, i.e., 
seats of forest fires.  A search for the forest fires and their 
detection in incipient stage are of primary interest to 
decrease essentially the number of heavy fires and to 
reduce expenses on fire control. 

Available algorithms for detecting forest fires are 
based on the IR radiation measurements in the spectral 
ranges from 3.55 to 3.93 μm and from 10.3 to 11.3 μm 
lying in the atmospheric windows.1  For temperatures 
typical of forest fires ranging from 800 to 1000 K the 
radiation maximum is in the first spectral range.  The 
radiation maximum of the underlying surface at a 
temperature of 300 K is in the second spectral range.  
Such spectral channels are available in the AVHRR 
radiometers placed on board the NOAA meteorological 
satellites. As shown in Ref. 1, infrared radiation 
measurements with 1-km2 resolution permit detection of 
the seats of forest fires at T ~ 1000 K over an area of 
100 m2 as well as zones of smouldering at T ~ 600 K over 
an area of 900 m2.  The presence of cloudiness essentially 
limits the possibilities of existing techniques for IR 
detecting the forest fires. 

This paper considers a problem of detection of the 
forest fires under conditions of cumulus clouds as a 
statistical hypothesis testing problem.  Such an approach 
is connected with the presence of breaks in the cloud field 
and partial transmission of radiation of the seats of forest 
fires (SFF) through optically thin clouds or their edges.  
The last circumstance leads to essential enlargement of 
the area of possible detection of SFF.  The problem is 

solved under conditions of significant fluctuations of the 
measurable radiative temperature because of the clouds 
fall within a radiometer view. 

 
CRITERION OF DETECTION 

 
A decision rule for detecting SFF can be formulated 

using different criteria, namely, Bayesian, maximum a 
posteriori probability, maximum likelihood, and 
Neuman$Pearson criteria.2  Selection of the criterion 
depends on the available a priori statistical data, i.e., the 
probability q that SFF falls within the radiometer view 
and the probability density f(P(Δλ1), P(Δλ2)) of powers 
P(Δλi) radiated by SFF in spectral ranges Δλi, i = 1, 2.  
Decision rules formulated by different criteria will be 
distinguished not only by decision algorithms but also by 
their quality. 

Let us accept two hypotheses: H0 that SFF is absent 
in the receiver view and H1 that SFF is in the receiver 
view.  When the hypothesis H0 is true, the receiver 
records only the background radiation of the underlying 
surface, clouds, and the atmosphere and when the 
hypothesis H1 is true, the background and the signal 
taken to mean the SFF radiation are recorded.  Because 
of the presence of the signal and background fluctuations 
due to the radiative transfer through the cumulus clouds, 
the errors of two types are possible: 

1) The decision γ1 is taken on the presence of SFF 
while the hypothesis H0 is true, namely, only the 
background is detected.  This error is characterized by the 
conditional probability α = P(γ1⏐H0).  Further α will be 
called the probability of false alarm. 

2) The decision γ0 is taken on the absence of SFF in 
the detector view while the hypothesis H1 is true, i.e., 
the receiver records the radiation of the fire seat and the 
background.  This error is of the second type with the 
conditional probability β = P(γ0⏐H1).  The conditional 
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probability of true detection P(γ1⏐H1) complements β to 
unity, i.e., P(γ1⏐H1) = 1 $ β. 

We introduce the following designations: 
p(θ0) = (p1(θ0), p2(θ0))  is the vector of powers pi(θ0) 
recorded by the IR-radiometer at altitude h0 in the 
spectral ranges Δλi (θ0 is the zenith angle of  
observation); f(p(θ0)⏐H0) = f0(p) and f(p(θ0)⏐H1) = 
= f1(p) are the joint conditional probability densities of 
the vector of sampling data in the hypotheses H0 and 
H1, respectively.  A set of values p(θ0) forms a space of 
sampling data E2.  To formulate the decision rule by 
any criterion, the probability densities f0(p) and f1(p) 
are necessary, first of all, to write the likelihood ratio.  
The a priori probability q and the a priori probability 
density f(P(Δλ1), P(Δλ2)) are required for the Bayes 
criterion, the a posteriori probability maximum 
criterion, and the maximum likelihood criterion. 

If the Bayes criterion is used, which minimizes the 
mean risk, the information for setting the loss function 
is also necessary.  This information specifies the charge 
for the errors of the first and second types.  We have 
no information for validated assignment of the loss 
function, the probability q, and the probability density 
f(P(Δλ1), P(Δλ2)).  Under these conditions, it is 
feasible to use the Neumann$Pearson criterion.2  This 
criterion makes it possible to formulate the decision 
rule, providing the maximum probability of true 
detection 1 $ β at a given probability of false alarm α.  
The decision rule based on the selected criterion 
specifies the probability ratio 

 

Λ(p(θ0)) = 
f1(p)

 
f0(p)  

 
and compares it with the threshold uα, whose value for 
the Neumann$Pearson criterion is determined from the 
condition 
 
P{Λ(p(θ0))⏐P(Δλi) = 0, i =1, 2} = α. 

 
In this case, the sample space E2 will be divided 

into two non-overlapping regions G0 and G1 
corresponding to the decision γ0 if p(θ0) ∈ G0 or γ1, if 
p(θ0) ∈ G1.  Thus, to formulate the decision rule 
within the scope of the selected parametric approach to 
the solution of the SFF detection problem, we must 
study the joint statistical characteristics of powers 
p1(θ0) and p2(θ0). 

This paper consideres the SFF detection based on 
the IR-radiation measurements in one spectral range 
Δλi.  Such an approach can be considered as the first 
stage of solution of the above-mentioned problem, 
enabling one to estimate the feasibilities of SFF 
detection under conditions of cumulus clouds.  In this 
case, the initial information for arriving at the decision 
is the radiative power p = pi(θ0) recorded with a 
radiometer in one of the spectral intervals Δλi.  Since 
the mean values of p in the hypotheses H0 and H1 
satisfy the evident condition 〈p〉1 > 〈p〉0, then the entire 

interval of possible values of p is divided by the 
threshold uα into two intervals2 [0, uα] and (uα,+∞).  
Decisions are taken by the following rule: γ0 (SFF is 
absent) if p ∈ [0, uα] and γ1 (SFF is present) if 
p ∈ (uα, +∞).  The value of threshold is obtained from 
the equation 

 

α = ⌡⌠
uα

+∞
 

 f0(p)dp,  (1) 

 
and the probability of true detection equals 
 

1 $ β = ⌡⌠
uα

+∞
 

 f1(p)dp. (2) 

 
The distribution f0(p) is determined only by the 

statistical characteristics of the background and does 
not depend on the SFF radiation power P(Δλi) in the 
selected spectral interval Δλi. 

 
STATISTICAL MODELS OF SIGNAL AND 

BACKGROUND 
 

Selection of approximations for the probability 
densities fj(p) (j = 0,1) is the most important stage of 
the detection problem solution.  This is explained by 
the fact that the threshold value uα depends 
significantly on the behavior of f0(p) at large values of 
p, i.e., at œtailsB of the distribution.  The behavior of 
f0(p) at the tails is determined by the distribution 
moments of order higher than the variance.  Therefore, 
to select the qualitative approximation for the 
probability densities fj(p) (j = 0,1), for example, 
according to the Pearson curves,3 we must know the 
first four moments of power p. 

For analytical setting of the probability densities 
fj(p), we can use their series expansion in orthogonal 
polynomials.  Since fj(p) = 0 for p < 0, then the 
approximation by the Laguerre series 

 

fj(p) = ∑
n=0

∞
  cj,ne$pp

νj L(νj)
n

(p),  j = 0, 1,  (3) 

 

is suitable,3 where  L(νj)
n

(p) is the generalized Laguerre 

polynomial and cj,n are the expansion coefficients.  To 
determine the nth expansion coefficient cj,n, we must 
know the first n initial moments 〈pn〉.  Therefore, the 
number of terms of series (3) is determined by the 
number of known moments 〈pn〉.  If we know the 
average and the variance, then Eq. (3) coincides with 
the gamma distribution 
 

fj(p) = 
1

ηj c(νj + 1) ⎝
⎛
⎠
⎞p

ηj

ν
j
 exp⎝

⎛
⎠
⎞$ 

p
ηj

 ,  (4) 

 
whose parameters are determined by the formulas 
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νj = 
〈p〉

2
j
 

Dj(p) $ 1,   ηj = 
Dj(p)

 
〈p〉j

 ,   j = 0,1.   (5) 

 
To evaluate the accuracy of approximation of Eq. (4), 
we must consider the term corresponding to n = 3 in 
Eq. (3).  In this case, the following expression 
 

fj(p) = 
1
ηj

 ⎝
⎛
⎠
⎞p

ηj

ν
j
exp ⎝

⎛
⎠
⎞$ 

p
ηj

 ⎝
⎛

⎠
⎞1

c(νj + 1) + cj,3 L
(νj)
3 ⎝
⎛
⎠
⎞p

ηj
   

  (6) 
 

is valid, where 
 

L
(νj)
3

(p) = [(νj 
+ 1)(νj + 2)(νj + 3) $ 

 

$ 3p(νj + 2)(νj + 3) + 3p2(νj + 3) $ p3]/6,  
 

cj,3 = 
(νj 

+ 1)(νj 
+ 2)(νj + 3)

c(νj + 4)  (1 $ ξγ,j) , (7) 
 

 

ξγ,j = 〈p3〉j/〈p3〉j(
γ) (8) 

 

is the ratio of 〈p3〉j to the third moment 
 

〈p3〉j(
γ) = η3

j(νj + 1)(νj + 2)(νj + 3) (9) 
 

of the gamma distribution p.  The difference 1 $ ξγ,j 
in Eq. (7) characterizes the relative deviation of the 

third moments 〈p3〉j and 〈p3〉(
γ)
j .  Therefore, the 

deviation of ξγ,j from unity can be considered as the 
degree of accuracy of fj(p) approximation by the 
gamma-distribution at the level of the third moments. 

 
SOLUTION TECHNIQUE 

 
To determine the threshold uα and to calculate 

the probability of true detection 1 $ β, approximation 
(4) or (6) is proposed for fj(p) depending on the 
value of the parameter ξγ,j determined by Eq. (8).  
The moments of thermal radiation power in the 
selected spectral ranges Δλi, i = 1, 2, are calculated 
using the numerical simulation technique.  The 
recorded power is determined by the expression 

 

pi(θ0) = ⌡⌠
ΔΩ

 

 dω⌡⌠
S*

R

 

 dρ⌡⌠
Δλi

 

 dλk(λ)I(ρ, ω, λ), (10) 

 
where S*R is the aperture of the receiving antenna of 
area SR, ΔΩ is the field–of–view angle of the 
radiometer, k(λ) is the transmission coefficient of an 
optical filter at the wavelength λ, and I(ρ, ω, λ) is 
the intensity of upwelling thermal radiation at a 
point ρ ∈ S*

R in the direction of unit vector ω. 
To calculate the intensity of upwelling IR 

radiation, we consider the nonscattering atmosphere 
being in the state of local thermodynamic equilibrium, 
horizontally homogeneous (except for a cloud layer, 
whose lower boundary is located at the altitude hb), 
with the temperature T(z) at the altitude z and the 

aerosol and gaseous extinction coefficient α(z, λ).  
Within the cloud layer the total extinction coefficient 
at the altitude z equals αΣ(z, λ) = α(z, λ) + αc(λ)χ(r), 
and χ(r) is the indicator field 

 

χ(r) = 1  if  r ∈ Θ   and χ(r) = 0  if  r ∉ Θ, 
 

where Θ is a random set of points in which the cloud 
substance with the extinction coefficient αc(λ) is 
present.  We consider the underlying surface to be an 
ideal black-body emitter with the temperature 
distribution Ts(x, y) and the clouds are nonscattering 
media.  The accuracy of the latter approximation 
when calculating the long-wave radiation flux in the 
presence of cumulus clouds was considered in detail 
in Ref. 4.  Based on the above assumptions, the 
intensity of upwelling thermal radiation at altitude 
h0 is determined by the well–known expression 
 

I(ρ, ω, λ) = Bλ(Ts(x, y))exp 

⎝⎜
⎜⎛

⎠⎟
⎟⎞ $ 

1
μ⌡⌠

0

h0
 

 αΣ(s, λ)ds  +  

 

+ ⌡⌠
0

h0
 

 Bλ(T(z))exp 

⎝⎜
⎜⎛

⎠⎟
⎟⎞ $ 

1
μ⌡⌠

z

h0
 

 αΣ(s, λ)ds  
αΣ(z, λ)

μ  dz,  (11) 

 
where B(Ts) is the Planck function, μ = cosθ0, 
x = x(ω, h0), and y = y(ω, h0).  The first term in 
Eq. (11) is the radiation of the underlying surface 
transformed by the atmosphere and the second term 
is the radiation of the atmosphere. 

The estimates of the power moments p are 
calculated by the successive simulation of realizations 
of the cloud field, calculation by formula (11) of the 
intensity of upwelling thermal radiation for each 
direction being in the receiver view, calculation of 
the power p by formula (10), and subsequent 
averaging over realizations of the cloud field. 

Simulation of realizations of the cloud field was 
considered in detail in Ref. 5.  It is assumed that a 
separate cloud is of the form of a truncated paraboloid, 
whose diameter D is equal to its height and has an 
exponential distribution f(D) ~ exp($αD), 
α = 2.30  < D < 1300 m.  The altitude of the lower 
boundary of the cloud layer equals 1 km.  The 
extinction coefficient αc(λ) is for C1 cloud6 at 
wavelengths of 4 and 10 μm.  Since the scattering 
effects are not taken into account, the realizations of 
the cloud field are simulated only within the 
radiometer view.  Then it is divided into square cells.  
Each cell is 25 m in horizontal size.  For each cell the 
thickness of the cloud layer is calculated.  In our 
calculations, we used the vertical profiles of the aerosol 
extinction coefficient borrowed from Ref. 7. The 
profiles of the humidity and temperature for the 
summer atmospheric model at mid-latitudes were 
borrowed from Ref. 8.  The water vapor absorption for 
the selected spectral ranges was considered using the 
technique described in Ref. 9.  In calculations of the 
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intensity I(ρ, ω, λ) and the power p we used the 
methods of numerical integration over the altitude z, 
the spectral range Δλi, and the field–of–view angle 
ΔΩ of the radiometer. 

 
RESULTS OF CALCULATION 

 
In general the distribution of Ts over the SFF is 

very complicated and is determined by a large 
number of different factors.10  The principal purpose 
of this paper is to illustrate the feasibility of 
detection of the seats of forest fires under conditions 
of cumulus clouds.  Therefore, in our calculations the 
simplest model of SFF is used consisting of two 
temperature zones, i.e., the zone of smouldering with 
T = 600 K and the seat of fire with Ts = 1000 K. 

Figure 1 shows an example of realization of the 
intensity field of upwelling thermal radiation  

⌡⌠
Δλi

 

 I(ρ, ω⊥, λ)dλ at the upper boundary of the 

atmosphere in spectral ranges from 3.55 to 3.93 μm and 
from 10.3 to 11.3 μm for the cloud amount N = 0.5, 
and ω⊥ = (0; 0; 1).  The seat of fire represents two 
bands parallel to the OX axis: the first band at 
Ts = 600 K is extended at 0.53 ≤ y ≤ 0.58 km and the 
second band at Ts = 1000 K is extended at 
0.58 < y ≤ 0.68 km.  The temperature of the other 
zones is 300 K.  Figure 1 shows different temperature 
zones, which are not anywhere resolved within the 
band of the fire seat.  This is explained by  
significant difference in the radiation intensities for 
the regions of the underlying surface with different 
temperatures.  The figure illustrates the visibility of 
different zones of the seat of fire overcast with 
optically thin clouds or their edges.  For the given 
realization of the cloud field, only one region of the 
fire seat is not visible overcast with optically thick 
central part of a cloud about 800 m in diameter. 

All subsequent calculations were carried out for 
h0 = 850 km, the field–of–view angle Ω = 1.88⋅10$6 sr 
and Θ = 0 (the nadir direction).  In this case, the 
area of the underlying surface S, falling within the 
radiometer view, equals 1 km2.  The relative 
dimensions of zones of the fire seat are determined by 
the two parameters: 

 
d1 = ΔS(Ts = 1000 K)/S,  
 

d2 = ΔS(Ts = 600 K)/S, 
 

where ΔS(Ts) is the area of the surface region at 
temperature Ts falling within the radiometer view.  
Figures 2 and 3 show the results of calculation of the 
curves of the dependence of relative moments of the 
power p recorded by the radiometer (here,  

δ = D(p)/〈p〉 is the relative standard deviation and 
kγ = M3(p)/D3/2(p) is the asymmetry coefficient) on 
the cloud amount N for different values of the 
parameters d1 and d2.  At d1 = d2 = 0, the temperature 
of the whole region of the underlying surface equals 

300 K that corresponds to the absence of SFF in the 
receiver view. 
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FIG. 1.  Realization of the intensity field of 
upwelling thermal radiation in the spectral ranges 
from 3.55 to 3.93 μm (a) and from 10.3 to 11.3 μm 
(b) for the cloud amount N = 0.5 (brightness is 
proportional to the value of the intensity). 
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FIG. 2.  Dependence of the relative standard 
deviation δ of the power p on the cloud amount N 
for the spectral range from 10.3 to 11.3 μm:  d1 = 0 
(1), 0.0025 (3, 4, and 5), and 0.01 (2);  d2 = 0 (1 
and 5), 0.024 (4), 0.05 (3), and 0.1 (2). 

 
The most important results are the calculated 

coefficients ξγ, determined by Eq. (8) and 
characterizing the degree of deviation of the 
probability density fj(p), determined by Eq. (6), 
from gamma distribution given by Eq. (4).  The 
curves of the dependence of ξγ on N are shown in 
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Fig. 4.  The parameters ν and η were calculated by 
formulas (5).  The figure shows that the value of ξγ is 
close to unity in the absence of the fire seat.  The 
presence of SFF in the radiometer view results in 
the deviation of ξγ from unity.  The magnitude of 
this deviation in the first channel is much larger 
than in the second channel.  In this case, the 
dependence of ξγ on the fire seat area is 
nonmonotonic.  From the above-said it follows that 
for determining the threshold uα in Eq. (1), the 
gamma distribution can be used for the 
approximation of f0(p) with a large degree of 
accuracy.   

Probabilities of detection of the fire seats of 
different size are shown in Fig. 5. The results of 
calculations indicate that the detection efficiency in the 
first spectral range is much higher than in the second 
range. As indicated above, this is explained by the fact 
that in this range the radiation maximum occurs at 
temperatures of about 1000 K. Figure 5a shows that 
the probability of SFF detection of size 25×25 m in 
the first spectral range for N < 0.5 is sufficiently 
high: 1 – β > 0.8. However, it should be noted 
that the probability of true detection for the 
spectral range from 3.55 to 3.93 μm is determined 
neglecting the interference of backscattering due to 
the reflected solar radiation. It can be large, 
especially in the presence of cumulus clouds or 
strongly reflecting vegetation.11 In the second 
spectral range this interference is absent. 
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FIG. 3.  Dependence of the asymmetry coefficient 
kγ of the power p on the cloud amount N for the 
spectral range from 3.55 to 3.93 μm: d1 = 0 (1), 
0.000625 (6), 0.0025 (3, 4, and 5), and 0.01 (2);  
d2 = 0 (1, 5, and 6), 0.024 (4), 0.05 (3), and 0.1 
(2). 
 

The results obtained indicate a principal feasibility 
of detection of the seats of forest fires under conditions 
of cumulus clouds.  To increase the detection 
efficiency, one must develop the algorithms using the 
results of measurements of a two-channel receiver that 
will enable one to consider different temperature 
dependence of the background and the seat of the fire 
in different spectral ranges. 
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FIG. 4.  Dependence of ξγ on the cloud amount N 
for spectral ranges from 3.55 to 3.93 μm (a) and 
from 10.3 to 11.3 μm (b).  Designations are the 
same as in Fig. 3. 
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FIG. 5.  Dependence of the probability of true 
detection of the seat of fire 1 – β on the cloud 
amount N at α = 0.02 for spectral ranges from 3.55 
to 3.93 μm (a) and from 10.3 to 11.3 μm (b): 
d1 = 0.000625 (5), 0.0025 (2, 3, and 4), and 0.01 (1); 
d2 = 0 (4 and 5),  0.024 (3), 0.05 (2), and 0.1 (1). 
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