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A series of experiments was conducted in order to study in detail the 

turbulence structure of the lower atmosphere using several computerized acoustic 

weather stations.  The data accumulation was performed in the process of 

automated measurements using different spatial arrangement of the stations in 

horizontal and vertical planes.  The possibilities of the model description of the 

spectral tensor of the wind velocity field fluctuations approximated by 

homogeneous anisotropic turbulence were studied based on the experimental data 

obtained.  We have done model calculations and compared predicted coherence 

with that measured experimentally. 

 

Detailed structure of small-scale turbulence of lower 
layers of the atmosphere is interesting from different 
points of view.  There is a wide scope of applied problems 
requiring adequate description of the spatial spectrum of 
turbulent pulsations of wind velocity in the surface layer.  
Information of such a kind is necessary, for instance, in 
the problems on propagation of optical and radio waves 
in the atmosphere, in solving problems of acoustic and 
lidar sounding, for taking account of pollutant dispersal 
in ecological problems, for estimation of spatial 
variability of wind pressure in calculating constructional 
stresses, etc. 

According to modern experimental and theoretical 
data, the three-dimensional spatial spectrum of 
turbulent pulsations of wind velocity is a tensor of the 
second rank. 

In the approximation of isotropic turbulence,1 the 
spectral tensor Φij(k) is completely determined by a 
single scalar function of the wave number k = ⏐k⏐ 

 

Ôij(k) = (4πk2)$1{δij $ ki kj k$2}E(k) , (1) 
 

namely, by the energy spectrum E(k) for which the 
Kolmogorov$Obukhov law of œfive thirdsB: 
E(k) ~ ε2/3k$5/3, where ε is the dissipation rate of the 
turbulence kinetic energy, should hold for reasons of 
dimensionality. 

The isotropic approximation in the surface layer 
sufficiently well works in the inertial interval of the 
wave number.  However, the turbulence becomes 
anisotropic with the increase of spatial scales and 
approaching the energy interval of the spectrum.2  In 
fact, when the distance between the observation points 
of wind velocity fluctuations is comparable with the 
outer turbulence scale, the hypothesis on the spatial 
isotropy of fluctuations fails.  So it is necessary to 
construct better models for the spectral tensor. 

According to the Monin$Obukhov similarity 
theory, the dimensionless spectra of fluctuations of 
wind velocity vector components in the surface layer of 
the atmosphere at the height z are universal functions 
of the dimensionless wave number kz and the 
stratification parameter z/L, where L is the Obukhov 
scale.  This means that specified characteristic 
frequencies corresponding to spectral maxima, low-
frequency boundaries of the inertial interval, etc. 
depend on the stratification.3  Thus, the similarity 
theory permits one to make some concrete conclusions 
about the shape of the spectra under different states of 
the surface layer stability.  Thus, the attempts to take 
into account some universal regularities in the surface 
layer by the similarity theory and experimental data are 
quite urgent in simulation of the spectral tensor. 

The kinematic model of turbulence developed in 
Ref. 4 is of special interest among the investigations on 
this problem.  It is based on the representation of the 
spatial spectrum of the velocity field fluctuations as an 
anisotropic tensor Φij(k).  The following form is 
proposed in the above-mentioned paper for the spectral 
tensor in the approximation of a homogeneous 
incompressible turbulent flow: 

 

Ôij(k) = ∑
l=1

3

  Al(k){δli $ kl ki k$2}{δlj $ kl kj k$2}. (2) 

 

In contrast to the case of isotropic turbulence (1), 
the description of the tensor (2) needs three 
independent real scalar functions A1(k), A2(k), A3(k) 
determining the energy of turbulent vortices along 
three orthogonal directions assigned by unit vectors i1, 
i2, i3.  

Variances σ2
u, σ

2
v, σ

2
w, integral scales lu, lv, lw, and 

dimensionless parameters μu, μv, μw characterizing the 
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spectrum inclination in the transition range from the 
inertial interval to the energy interval of wave numbers 
are used in Ref. 4 as the parameters describing the 
behavior of the spectra of longitudinal, transverse, and 
vertical components u, v, w of the velocity.  Here, the 
analytical expressions for one-dimensional spatial 
spectra of fluctuations of the velocity components have 
the form 

 

Fu(k) = 
lu σ
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where a(μ) = {πμc[5/6μ]}/{c(1/2μ)c[(1/3μ)]} is a 

dimensionless constant determined by the normalization 

condition σ2 = ⌡⌠
$∞

∞

 F(k)dk for each concrete value; k is 

the wave number along the direction of the mean 
horizontal velocity.  The expression for Fw(k) is similar 
to that for Fv(k) given the corresponding change of 
indices. 

Thus, one uses nine parameters as œinputB 
information for constructing the model of tensor (2).  
The analytical dependences of A-functions on these 
parameters proposed in Ref. 4 are not presented here 
because they are too cumbersome.  In our opinion, an 
advantage of the approach considered is that the input 
parameters of the model can be obtained in two ways: 
first, by model assignment depending on the conditions 
of stratification and scaling on the basis of similarity 
theory  (here, one can use data already published in 
order to reach more high level of generalization); 
second, by direct determination of the unknown 
parameters on the basis of approximation of the 
experimentally measured spectra by expressions (3) 
according to the least-squares method followed by 
calculation of A-functions and the tensor (2).  The 
implied possibility of a model description of the spatial 
structure of homogeneous anisotropic turbulence with 
the exclusion of the necessity to perform measurements 
at many points is very attractive from the practical 
point of view.  But the model considered has some 
shortcomings.  In particular, it cannot guarantee 
positive definiteness of the tensor (2) for arbitrary 
input parameters. 

The coherence function 
 

c 2
ij(R, ω) = ⏐Wij(R, ω)⏐2/⏐Wij(0, ω) Wji(0, ω)⏐, (4) 

 

where Wij(R, ω) = 
1
2π ⌡⌠

$∞

∞

 Bij(R, τ)exp($iωτ)dτ is the 

mutual spectrum of fluctuations at two spatially 
separated points, is one of the most informative 

characteristics among others being used to describe 
statistical laws of the spatial structure of the random 
wind velocity field. 

Let the observation points be separated in a 
horizontal plane by the distance R normally to the 
mean wind direction.  Using the hypothesis of frozen 
turbulence and expansion into the three-dimensional 
spatial spectrum for the spatiotemporal correlation 
function Bij(R, τ) and the model representation (2), 
one can obtain the following expressions4 for the 
mutual spectra of longitudinal, transversal, and vertical 
velocity components: 

 

W11(R, ω) = 2πv$1 
⌡⌠
0

∞

  k3 *$4{k2 J0(Rk) A1(*) + 

 

+ ω2 v$2 [J0(Rk) $ R$1 k$1 J1(Rk)]A2(*) + 
 

+ ω2 v$2 R$1 k$1 J1(Rk)A3(*)}dk; 
 

W22(R, ω) = 2πv$1 
⌡⌠
0

∞

 k *$4{ ω2 v$2 k2[J0(Rk) $ 

 

$ R$1 k$1 J1(Rk)]A1(*) + [(ω4 v$4 $ 3R$2 k2)J0(Rk) + 
 

+ 2R$1 k(ω2 v$2 + 3R$2 )J1(Rk)]A2(*) + 
 

+ R$2
 k2[3J0(Rk) + (R2

 k2
 $ 6)R$1

 k$1
 J1(Rk)]A3(*)}dk; 

 

W33(R, ω) = 2πv$1 
⌡⌠
0

∞

 k *$4
 { ω2

 v$2
 R$1

 k J1(Rk) A1(*) +  

 

+ R$2 k2[3J0(Rk) + (R2 k2 $ 6)R$1 k$1 J1(Rk)]A2(*) + 

 

+ [(*4 $ 3 R$2 k2)J0(Rk) $ 2(*2 k2 $ 3 R$2 k2) × 
 

× R$1 k$1 J1(Rk)] A3(*)}dk,   (5) 
 

where k = k2 + ω2v$2; Jn(x) are Bessel functions of 
the nth order. 

Thus we can calculate coherence, i.e., obtain 
information about the spatial structure of an anisotropic 
wind velocity field as a whole within the frames of the 
homogeneous turbulence approximation by using the 
parameters of velocity component autocorrelation 
spectra measured experimentally at a single point as an 
input information. 

Since most of the investigations are restricted by 
the use of isotropic turbulence approximation, 
experimental measurements of coherence are not enough 
complete to perform detailed comparison with the 
model prediction. 

The aim of the study presented in this paper is to 
experimentally verify the spectral tensor model4 which is 
not isotropic but includes isotropy as a particular case. 

The acoustic weather station,5 which is a compact 
program-simulated device and enables one to obtain data 
about each component of the wind velocity, temperature, 
and their fluctuations at frequency up to 20 Hz and to 
measure air pressure and humidity, was the principal 
measuring instrument in the experiments performed.  Two 
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to three such weather complexes controlled by a personal 
computer were used in the experiments, and this made it 
possible to realize long-term automated measurements and 
data storage.  Different spatial arrangements of the 
weather stations both in the horizontal and a vertical 
planes were used in different experiments.  The processing 
of measurement data included the calculation of 
autocorrelation spectra and coherence spectra for all the 
three velocity components, friction rate, temperature 
scale, flows of momentum and heat, Obukhov scale, and 
Richardson’s number what made it possible to monitor 
the state of the surface layer by stratification conditions.  
Some preliminary results of the investigations are 
published in Ref. 6. 

In general, the investigations performed confirm the 
existence of strong anisotropy of the wind velocity field 
fluctuations in the surface layer and the dependence of 
the pulsation energy distribution over the space of wave 
numbers on the shape of the corresponding one-
dimensional spectra Fu(k), Fv(k), Fw(k).  At the same 
time, the A-functions calculated in accordance with the 
model prove to be negative in the region of small wave 
numbers in some cases for particular parameters of the 
 

spectra σ2, l, μ obtained experimentally.  This leads to 
the break of the positive definiteness condition of the 
tensor Φij(k), and we obtain coherence greater than unity 
for the corresponding velocity component. 

This discrepancy is caused by the drawbacks of the 
model related to the fact that, in real experiments, one 
often observes nonstationarity caused by daily radiation 
fluctuations and leading to change of the heat flow H 
depending on time and height.  This effect is especially 
strong under the spacing R considerably exceeding the 
value of the outer turbulence scale. However, the 
contribution of negative values of A3 corresponding to 
large-size vortices decreases for horizontal spacing equal 
or somewhat less than lu, and the model coherence does 
not exceed unity. 

The spectra of wind velocity components measured 
over the plain underlying surface at midday time in 
summer under unstable stratification of the surface layer 
for z/L = $0.064 and normalized by the variance are 
presented, as an example, in Fig. 1. The sample contains 
8192 synchronously measured values of three wind 
velocity components and temperature.  The measurements 
were performed at a rate of 10 Hz during 13.65 min. 

 
 

 
FIG. 1.  One-dimensional spectra for the longitudinal, transverse, and vertical wind velocity components, u, v, w, 
obtained experimentally. 

 

 
FIG. 2.  Three model A-functions determining the spectral tensor, calculated for the spectra depicted in Fig. 1. 
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FIG. 3.  Coherence spectra for longitudinal (1, 1′), transverse (2, 2′), and vertical (3, 3′) wind velocity 
components obtained experimentally (curves 1$3) and calculated by the model (1′$3′). 

 
The whole sample was divided into 16 sequential 

intervals containing 512 points each in order to increase 
the degree of freedom in the spectral processing.  
Linear filtration of data was carried out using the 
approximation with a polynomial of the first degree 
followed by subtraction from the initial data array.  So 
the trend effects in the wind velocity were excluded.  
The spectra calculated for each interval were summed 
up and normalized by the sample variance.  The 
resulted spectra were smoothed over five neighboring 
points.  According to our estimations, the relative error 
of the spectrum estimation using this processing does 
not exceed 11%.  The values of wind velocity 
components averaged over measurement time were as 
follows: Vu = 1.446 m/s, Vv = 0.000 m/s,  
Vw = $0.086 m/s.  Spectral parameters obtained by 
the least-squares method for these velocities are equal 
to  

 

σ2
u = 0.190 m2/s2 σ2

v = 0.145 m2/s2 σ2
w = 0.056 m2/s2

lu = 1.074 m lv = 1.095 m lw = 0.426 m 
μu = 1.2 μv = 1.5 μw = 1.61 

 
Figure 2 presents three A-functions determining 

the spectral tensor (2) and calculated for the above-
mentioned parameters in correspondence with the 
model.4  Figure 3 presents the coherence spectra 
calculated by formulas (4) and (5), and those obtained 
experimentally at the transverse horizontal separation 
R = 0.5 m.  A little excess of the experimental 
coherence over the calculated one can be explained, on 
the one hand, by the shortcomings of the model 
restricted by the hypotheses of frozen and homogeneous 
turbulence and, on the other hand, by errors in 
determining input parameters of the model and in 
performing the model calculations.  Since the model 
considered imposes increased requirements on the  
correctness of statistical processing of the measurement  
 

data, it is necessary to eliminate low-frequency trends 
in the initial temporal series of data in order to increase 
the reliability of spectral estimations in the region of 
low frequencies. 

On the basis of a good coincidence of the predicted 
and the experimentally measured coherence, one can 
come to a conclusion that the model considered can be 
useful in estimating spatial statistics of turbulent 
pulsations using information obtained at a single point 
of the space when the conditions of the experiment 
correspond to the accepted hypotheses. 
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