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Influence of cloud amount and height of a single-level cloudiness on the 

formation and evolution of near-ground temperature inversion within the boundary 

atmospheric layer at night is considered in this paper. Some peculiarities of the 

inversion height behavior, particularly, its sharp decrease as the cloud amount 

exceeds certain value are discussed using model estimates. Correlation between the 

inversion height, cloud amount and dynamic friction velocity is illustrated with 

model examples. 

 
Many applied problems of atmospheric physics, as 

well as problems on propagation of waves of different 
origin in the planetary boundary layer require 
derivation of efficient algorithms for prediction of 
short-term variations of the main meteorological 
parameters within the atmospheric boundary layer 
(ABL), such as profiles of wind velocity vector, 
humidity, turbulent fluxes of medium constituents and 
temperature. It is the temperature among the ABL 
parameters to be investigated in this paper.  

Clearly, the problem on temperature prediction 
was solved and is solved over tens of years and, 
therewith, increase in accuracy of ground temperature 
prediction in the scale range from local to global is 
generally the main aim of investigations. The 
question on diurnal behavior of the temperature 
profile in ABL, along with the inversion distribution 
of the temperature is less well understood. 
Nevertheless, such a problem as that on the evolution 
of radiative temperature inversion under cloudy 
conditions needs for further analysis. When 
forecasting temperature profile, cloudiness is 
generally mentioned as a factor which moderates 
development of the inversion without specific 
algorithm of consideration of the cloudiness itself.  

The aim of this paper is to close, although 
partially, this gap in the problem and estimate 
quantitatively the cloudiness effect on the evolution 
of radiative ground temperature inversion. In our 
calculations, the simplest model of evolution of 
absolute temperature profile T(z, t) with the presence 
of vertical turbulent heat transfer and radiation 
cooling of the atmosphere being uniform in the 
horizontal direction, without considering air 
advection, is chosen. This model is described by the 
following expression: 

 

∂θ(z, t)
∂t  = 

∂
∂z ⎣
⎡

⎦
⎤kT(z, t) 

∂θ(z, t)
∂t  + 

1
cpρ

 
∂R(z, t)

∂z  , (1) 

 

Here θ(z, t) ≈ T(z, t) + 0.01z is the potential 
temperature of air (K), kT(z, t) is the turbulent 
thermal diffusivity (m2/s), R(z, t) is the effective flux 
of IR radiation at a height z at a time t (W/m2), 
cp = 1006 J/(kg⋅K)⋅is the air specific heat at a constant 
pressure, ρ is the air density (kg/m3). Note that most 
of the equations used in this paper are taken from 
Refs. 1 and 2.  

Boundary conditions for the equation (1) at z = 0 
is often based on the following equation of heat balance 
of the underlying surface: 

 

R(0, t) + cp ρ kT(0, t) 
∂θ(0, t)

∂z  $ λs 
∂Šs(0, t)

∂z  + 
 

+ Ls ρkT(0, t) 
∂w(0, t)

∂z  = 0. (2) 

 

Here L
s  is the specific heat of water evaporation 

(L
s 
= 2.45 J/kg at T(0, t) = 293 K), w(0, t) is the 

specific air humidity (kg/kg), λ
s
 and T

s
 are molecular 

heat conductivity and absolute temperature of soil, 
respectively. 

The height of the model upper boundary is defined 
by either the height of the lower boundary of 
cloudiness zc or some height zT providing reasonably 
complete consideration of the descending flux of IR 
radiation under clear sky condition. Boundary condition 
for the equation (1) at the upper model boundary under 
clear sky conditions is given by the following 
expression:  

 

∂θ(zT, t)

∂z  = const (3) 
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and is characterized by nonzero absolute temperature 
with a constant gradient. 

Consideration of the cloudiness influence is carried 
out based on the simplest model: a single-level 
cloudiness with smooth lower boundary and emissivity 
being similar to that of a black body. Overcastting 
range is defined by the cloud amount N = 0$1. The 
second boundary condition for the equation (1) with 
cloudiness depends on the height of clouds and is 
described by the equation of the  
type (3).  

Effective flux of IR radiation is defined by the 
following expression: 

 

R(z, t) = G(z, t) $ U(z, t), (4) 
 

where G(z, t) and U(z, t) are profiles of descending 
and ascending fluxes of thermal radiation (W/m2), 
respectively. These profiles are given by the following 
equations: 
 

G(z, t) = B(zT, t)D(z, zT) $ ⌡⌠
z

zT

 B(z′, t)dD(z, z′), (5) 

 

U(z, t) = δB(0, t)D(0, z) + ⌡⌠
0

z

 B(z′, t)dD(z′, z) $ 

$ (1 $ δ)⌡⌠
0

z

 B(z′, t) dD[m(0, z′) + m(0, z)]. (6) 

 

Here δ is the relative absorption coefficient  
of the Earth′s surface, B(z, t) = σ T4(z, t) is the 
natural emission of the atmosphere (W/m2), 
σ = 5.67⋅10$8 W/m2K4 is the Stefan-Boltsman 
constant, D(z1, z2) is the diffuse integral function of 
the atmospheric transmittance (only water vapor is 
considered), m(z1, z2) is a function of the water vapor 
mass in the air column with a unit area between z1 and 
z2 heights. The function D(z1, z2) is taken in the 
following form (see Ref. 3): 
 

D(z1, z2) = 0.74e$0.28 i + 0.26e$5.5 i, (7) 
 

where  

i = m/ m + 0.0001; m(z1, z2) = 1.67⌡⌠
z1

 z2

 ρw(z′)dz′;  

ρw(z) is the density of water vapor. The radiative 
inflow (sink) of heat in ABL governed by the second 
term in the right-hand side of Eq. (1) is calculated 
based on Eqs. (4)$(7).  

The radiative balance of the underlying surface 
under cloudy conditions is given by the following 
expression: 

 

R(0, t) = N R1(0, t) + (1 $ N)R0(0, t), (8) 
 

where R1 and R0 are the radiative balances of the 
underlying surface at an overcast and clear sky, 
respectively, N is the cloud amount. 

The main factor that governs the temperature 
profile dynamics in the ABL is turbulent heat flux 
whose parametrization causes the need for simulation of 
the turbulent thermal diffusivity kT(z, t). Many papers 
have been devoted to solution of this problem (see, for 
example, Refs. 8 and 9 and references therein). 
However, no versatile model of kT(z, t) has been 
constructed yet. Therefore, when simulating kT(z, t) 
either empirical equations resulting from local 
experiments or expressions following from a set of 
theoretical grounds are used. In this paper, a model of 
kT is proposed based on the results from Refs. 4 and 5 

 

kT(z, t) = 

⎩
⎨
⎧

>

k0 

+ αij u* 
z/ϕ(z, t),  z ≤ h(t),

ka + kT(h)exp($β[z $ h(t)]), z > h(t),
 (9) 

 

ϕ(z, t) = 
⎩
⎨
⎧

>

1 + 6.34ξ, 0 < ξ ≤ 1,
7.34,  1 < ξ.  (10) 

 

Here k0 = 1.4⋅10$5 m2/s is the molecular air thermal 
diffusivity, ka is turbulent thermal diffusivity above the 
inversion, ij = 0.4 is Karman constant, u

∗
 is the 

dynamic friction speed, α = 1.35, parameter β controls 
the fall-off rate of kT(z, t) in the region above the main 
turbulized layer at a height h(t), ξ = z/L(t)  
is the dimensionless height, g = 9.81 m/s2,  

L(t) = $u3

*
 cp ρT(0, t)/ij g QT(t) is Monin-Obukhov 

scale, QT = $cp ρkT(0, t)∂θ(0, t)/∂z is the turbulent 
heat flux at the underlying surface. The conditions to 
be considered in this paper are characterized, in 
particular, by QT ≤ 0. Hence, the scale L is above zero. 
In this case, the height of turbulized layer, h(t), can be 
written as  

 

h(t) = 
0.3u

*

f(1 + (0.353/ij) u
* 
ij/fL(t))

 . (11) 

 

Here f = 2ω sinΩ is the Coriolis parameter for the 
latitude Ω, ω =7⋅10$5 rad/s is the angular speed of the 
Earth′s rotation. 

Thus, we have practically defined the functions 
and the parameters which are necessary for solving 
Eq. (1) with the boundary conditions (2) and (3). So 
we have now to propose a model of latent heat fluxes 
and heat flux from the soil deep. Comprehensive 
estimation of those fluxes is possible based on the 
solution of a set of corresponding differential equations 
including Eq. (1). In this case, the state of the ground 
air layers, plant cover and soil interacting with each 
other is extremely variable. Therefore, taking into 
account the idea of the problem to be formulated in 
this paper, there is a little point to simulate such 
specific conditions. In accordance with this assumption, 
the condition for latent heat fluxes and heat flux from 
the soil deep were assumed to be connected with the 
radiative balance and have the value W⋅R, where 

W < 1. That is, the following expression is valid 
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$ LsρkT(0, t) 
∂w(0, t)

∂z  + λs 

∂Ts(0, t)
∂z  = WR(0, t). (12) 

 

This equation reduces the boundary condition (2) to 
the following form: 
 

(1 $ W)R(0, t) + cp ρkT(0, t) 
∂θ(0, t)

∂z  = 0.  (13) 

 

The variations of W provide a simplified consideration of 
effects of latent fluxes and heat fluxes from the soil on 
the heat balance of the underlying surface. 

Numerical method of finite differences was used to 
solve Eq. (1). The finite-difference model (FDM) with a 
nonuniform grid in time and height (see Ref. 7) was 
taken as a basis for calculations. Specifically, the 
monotonic Krank$Nicholson schematic model with a 
unity weight on a six-point two-layer template was 
realized. Stability of the solution is achieved by following 
the selection rules of the initial model parameters, 
proposed in Ref. 7. The developed finite-difference 
algorithm for solution for Eq. (1) was tested by its 
analytical solutions resulting from sufficient 
simplification of the functions entering into the equation 
and its boundary conditions.  

When employing the FDM, estimations of advance 
values of the source function [second term in the right-
hand side of Eq. (1)] and radiation balance of the Earth’s 
surface dependent on temperature are needed. For this 
purpose, the temperature profile from the preceding time 
step is used in our calculations. Of course, this introduces 
certain errors into the forecast, but these errors are 
insufficient to violate the temperature profile to be 
predicted. This conclusion was tested both by analytically 
solved models and by changing parameters in the finite-
difference schematic model. Note also that finite 
differences were not used everywhere over the height 
region 0 ≤ z ≤ zT. Below this point will be discussed in a 
more detail. 

Before considering the calculational results, let us 
mention the main parameters of the computation model 
and insert them into a œstandardB set. Only deviations 
from this set will be noted below. The values of the 
parameters from the set were chosen irrespective of the 
specific situation. Then, let us set the initial structure 
of the temperature profile and assume that at clear sky 
the upper boundary in the model zT = 25 km and 
absolute temperature profile above zu = 2 km varies 
according to the following model: 

 

T(z) = 

⎩
⎨
⎧

>

T(zu) $ 6.5(11 $ zu), zu< z
 

≤ 11 km,
T(z = 11 km), 11 km < z ≤ zŠ.

 (14) 

 

Solution of the Eq. (1) was combined from the 
solutions for the layers in the following ranges of z: 
zu ≥ z ≥ zl (zl =1 km) and zl > z ≥ 0. The condition 
proposed for the first range is 

 

θ(z, t) = T(zl, t) + 0.01zl = const, (15) 
 

which estimates ∂θ(z, t)/∂z = 0 at zu ≥ z ≥ zl (that is, 
potential temperature is fixed with height, but it can 

vary in time). Fulfillment of this condition is achieved, 
firstly, by the model of the coefficient kT(z, t), which 
rapidly approaches a constant value kT = ka above h(t) 
and, secondly, by the assumption that radiative cooling 
of the atmosphere is independent of height starting 
with some level zr ≤ zl. Certainly, this assumption 
introduces errors into T(z, t) profile to be predicted. 
But, as the test calculations show, these errors are not 
significant for those temperature distributions which 
are presented in the below examples. As a result, 
radiative cooling of the atmosphere independent of 
height occurs in the layer with z ≥ zl. Equation (1) is 
numerically solved for the atmospheric layer with 
0 ≤ z ≤ zl using finite-difference schematic model whose 
boundary conditions are defined by the expression (13) 
for the boundary z = 0 and by the equation ∂θ/∂z = 0 
at the height z = zl which serves as the second 
boundary of the FDM. Note once more that the 
temperature profile model presented above is 
determined for the cloudless conditions. Under cloudy 
conditions with the lower boundary of clouds at zc ≤ zl, 
calculations from finite differences are performed for all 
layers below the clouds. Otherwise, œtwo-layerB 
solution is used. The profile of water vapor density in 
our calculations obeys the condition of constant 
behavior of relative humidity U0 with height. 

For the term œcloudlessB to be completely defined, 
we give the values of the above-mentioned parameters 
used in our calculations: u

* 
= 0.15 m/s, β = 0.01, 

Ω = 56°N, δ = 0.986, zr = 800 m, ka = 0.005 m2/s, 
u0 =70%, W = 0.8. Under cloudy conditions, values 
N = 1 and zc = 5000 m must be added to this set of 
parameters to describe the term œcloudyB (overcast with 
its lower boundary at 5 km). The initial temperature 
profile in the layer with 0 ≤ z ≤ zl is assumed to fit the 
indifferent stratification, that is, ∂θ(z, 0)/∂z = 0 at 
T(0, 0) = 293 K and T(z, 0) = T(0, 0) $ 0.01z. The model 
temperature profile for high atmospheric layers has been 
preset earlier.  

Coming to calculational results, we would like to 
note first of all the order of values describing specific 
processes and parameters. Thus, Fig. 1a depicts 
variations of air temperature profile over period from 
21 p.m. of local time to 6 a.m. of the next day for 
cloudless (solid lines) and cloudy (dashed line) 
conditions at the same initial profile T(z, 0). It is 
evident that cloudiness with cloud amount less than 
unity will result in changes of the temperature profile. 
Moreover, the plot of these changes will be placed 
between solid and dashed lines 2. The heat fluxes QT 
under cloudless and cloudy conditions vary in the 
ranges from $20 W/m2 and $11 W/m2 at the 
beginning of the forecast to $15 W/m2 and $8 W/m2 
by its end, respectively. Remind that the equation 
QT(t) = (1 $ W)R(0, t) is valid in the given model. 
Moderate overnight changes in QT and temperature of 
underlying surface  at œstandardB conditions produce 
only small-scale changes in the height of turbulized 
layer h(t) (from 69 to 76 m for cloudless conditions 
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and from 89 to 97 m for the cloudy ones, respectively). 
Small-scale changes in turbulent thermal diffusivity are 
also evident (see Fig. 1b). Moreover, turbulent heat 
exchange is faster under cloudy conditions.  

Radiative heat sinks above several meters from the 
surface at the initial time are ($0.15 $ $0.25)K/h at 
clear sky and ($0.05 $ $0.1)K/h under cloudy 
conditions. Radiative cooling in the ground layer 
sharply increases and peaks at z = 0. Its maximum 
values equal $11.5K/h and $6.1K/h under cloudless 
and cloudy conditions, respectively. By the end of the 
time interval considered, the rate of radiative cooling 
considerably changes only in the lower part of the 
ABL. In this case the rate of surface cooling at the 
expense of this process is ($5 $ $4)K/h and the profile 
takes the shape characteristic of the inversion 
conditions (see Fig. 1c).  

 

 
 

 
 
FIG.1. Example of absolute temperature (a), turbulent 
thermal diffusivity (b) and radiative cooling rate (c) 
profiles under cloudless (solid lines) and cloudy 
(dashed lines) conditions. Curves 1 and 2 correspond 
to the initial and finite points of time, respectively. 

 
It should also be mentioned that the temperature 

profile model limited by the height zT = 25 km with 
non-zero temperature at that height slightly 
underestimates the atmospheric radiative cooling (by 

about $0.05K/h in ABL). However, such an error is 
no more than that due to simplification of different 
processes and can be neglected. 

Let us now examine the effect of cloudiness itself 
on the inversion evolution. In so doing, only the height 
of the inversion Hin and the temperature difference ΔTin 
across the inversion layer will be considered instead of 
the profiles themselves thus providing a decrease in the 
graphical data to be presented. Unfortunately, in this 
case visual demonstration of the process of T(z, t) 
transformation will be poorer. Application of finite-
difference schematic model provides discrete, with 
height, values of the desired parameters. Approximation 
of the temperature profile by a polynomial in data 
processing allows us to find estimations of the inversion 
height in the case when the height is between the grid 
nodes.  

 

 
 

FIG. 2. Inversion height as a function of cooling time 
under cloudless (curve 1) and overcast conditions 
(dashed lines). Curves 2, 3, 4, and 5 correspond to 
zc = 10, 7, 5, and 3 km, respectively. For comparison, 
the empirical curves8 at weak (6) and moderate (7) 
wind are presented 

 
First of all, we consider time dependence of the 

inversion height at clear sky and at overcast with 
different height of its lower boundary. Figure 2 depicts 
Hin as a function of forecast period Δt = t $ t0 (here 
the forecast is assumed to start at 6 p.m. of local time 
when the darkness comes). Solid and dashed lines 
correspond to clear sky and cloudy conditions, 
respectively. Two curves (dot-and-dash lines) from 
Ref. 8 are presented here, as well. These curves 
correspond to experimental data obtained at low (curve 
6) and moderate (curve 7) wind from high-altitude 
tower measurements in Obninsk. Quantitative  
estimations of cloudiness over the period of 
measurements are not presented in Ref. 8. The inversion 
depth ΔTin from the model calculations depicted in 
Fig. 2 peaks by the end of the forecast and comprises 
4.5 K at clear sky with zc = 5 km and 0.5 K at cloudy 
conditions with zc = 3 km, respectively. Comparison 
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between ΔTin values and those obtained from empirical 
expression,8 ΔTin e = q[T(0, 0) $ T(0, Δt)], 
q = 0.65±0.12, gives the following results. Value of 
ΔTin e = (5.8±1.1)K correlates with that of ΔTin under 
cloudless conditions, but ΔTin e  differs significantly 
from ΔTin under cloudy conditions. For example, ΔTin e 
value as high as (2.6±0.48)K takes place under cloudy 
conditions (zc = 5 km, N = 1.0). Note that a set of 
parameters, including cloud amount, to be used in 
calculations should be well agreed for a proper 
comparison of simulated and calculated values of the 
inversion depth. Nevertheless, it is reasonable to assume 
that model calculations as a whole take an equivalent 
account of the main processes of the inversion 
formation and they can be used for estimation of the 
cloudiness effect on the evolution of temperature field 
in ABL. 

 

 
FIG. 3. Inversion height versus cloud amount and 
cloudiness height. Curves plotted by solid, dashed, 
and dot-and-dash lines are obtained at a standard set 
of parameters, W = 0.7, and δ = 1, respectively. 
Curves 1, 2, 3, 4, and 5 correspond to cloudiness 
height of 1, 3, 5, 7, and 10 km, respectively. 

 
The calculations performed make it possible to 

show a number of plots demonstrating height of 
inversion as functions of cloud amount and height of 
cloudiness lower boundary to be constructed. Thus, 
Fig. 3 depicts Hin versus zc and N after nine-hour 
evolution. Behavior of Hin at low cloudiness and high 
cloud amount is most interesting, namely, sharp 
decrease of the inversion height as cloud amount 
exceeds some critical value. Actually, there is a 
threshold value of N, exceeding which at a given 
height of cloudiness practically ensures the absence of 
inversion in the ABL since the inversion depth under 
these conditions is only several tenths degree. Clearly, 
deviations from standard conditions could result in 
displacement of the threshold value. For example, 
dependences for W = 0.7 (dashed line) and for δ = 1.0 
(dot-and-dash line) are also shown in Fig. 3.  
Displacement of the threshold value of N is apparent.  

Neglect of the temperature advection in Eq. (1) 
does not preclude consideration of the wind action on 
such an important parameter as turbulent thermal 

diffusivity kT(z, t). This is achieved by varying the 
dynamic velocity u

∗
 which enters into both the equation 

for kT and the expression for the turbulized layer height 
inside the inversion, h(t). It is well known that the 
higher is the wind, the higher is u

∗
. It is also a fact 

that if clouds are observed, the wind occurs. Therewith, 
as a rule, the lower cloudiness, the higher wind. Based 
on these facts, we consider the relationship between 
wind, cloudiness and inversion height in the simplest 
approximation. On the basis of data presented in 
Ref. 1, let us assume that at clear sky calm conditions 
u
∗
 = 0.05 m/s, whereas under cloudy conditions 

dynamic velocity is given according to Table I. 
As our calculations show, dynamic friction velocity 

has a strong effect on the inversion formation. Initial 
increase of height Hin with cloud amount increase and 
its rather sharp decrease as the cloud amount exceeds 
some value are shown in Fig. 4.  

 

 
 

FIG. 4. Inversion height versus cloud amount and 
cloudiness height after nine-hour cooling of the 
underlying surface. Certain value of the dynamic 
friction velocity listed in Table I corresponds to 
certain cloud amount and cloudiness height values. 
Curves 1, 2, 3, and 4 correspond to cloudiness height 
of 3, 5, 7, and 10 km, respectively.  

 
The physical grounds for this are very simply, i.e., 

the higher is the value of the coefficient kT(z, t), the 
faster comes the process of smoothing temperature 
inhomogeneities and the process of heat exchange between 
layers involves higher layers of the ABL. Thus, if the rate 
of radiative cooling of the underlying surface is less or 
equal to the rate of turbulent heat inflow from the 
atmosphere, the inversion does not occur. Therefore, if 
radiative cooling of soil dominates over heat inflow from 
both soil and the atmosphere, formation of the inversion 
starts. In this case, the faster is the ground temperature 
fall and the higher is the turbulent thermal diffusivity, 
the higher is the inversion height. Cloud amount controls 
IR radiation fluxes, while dynamic velocity controls 
turbulent heat exchange. These are just the parameters 
whose balance determines the height of the resultant 
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inversion. As to the curves presented in Fig. 4, the 
following statement can be made. The range of 
conditions, where cooling of underlying surface 

dominates, is located to the left of the curve maximum, 
whereas turbulent heat exchange over the entire height of 
ABL prevails to the right of the maximum.  

 
 

TABLE I. Dynamic velocity, m/s. 
 

Height, cloud amount, N 

z, km 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

10 
7 
5 
3 

0.05 
0.05 
0.07 
0.10 

0.05 
0.07 
0.10 
0.12 

0.08 
0.10 
0.12 
0.15 

0.10 
0.12 
0.15 
0.17 

0.13 
0.15 
0.18 
0.20 

0.15 
0.18 
0.20 
0.22 

0.17 
0.20 
0.22 
0.25 

0.19 
0.21 
0.24 
0.27 

0.20 
0.22 
0.25 
0.28 

 
 
In conclusion, we emphasize once more that the 

data presented in this paper have been obtained from 
the simplest model of heat exchange between air and 
soil. Reliable quantitative data can be found only from 
an extended simulation of conditions and processes 
involved in the inversion formation in ABL including 
consideration of the radiative transfer under conditions 
of broken clouds. 
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