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We discuss here a solution of the problem on stabilization of the position 
of a laser beam axis based on real time tracking of a natural star image in the 
focal plane of a telescope.  In particular, we calculated the cross-correlation 
function between the vector, characterizing random shift of the power center 
of gravity of an optical beam propagated through a turbulent medium, and the 
vector, determining the center of gravity of a star image or any reference 
source formed by the same optical system.  The cases with monostatic and 
bistatic laser reference stars are considered.  The causes of inadequate 
correction when using a “pure” signal of backscattering are explained. 

 

The development of theoretical and experimental 
studies with the use of the lasers for creating 
artificial reference stars, which have become popular 
in recent years,1,2 have made the author to revise his 
results obtained 12 or 15 years ago.  These results 
were published in Refs. 3–8.  The results became 
available to the majority of scientists, including 
foreign ones, when the monographs9,10 were 
published. 

At that time, the author was solving the problem 
on stabilization of the position of a laser beam axis 
based on the real time tracking of a natural star 
image in a telescope focal plane.  In particular, the 
cross-correlation function was calculated between the 
vector characterizing the random shift of power 
center of gravity of an optical beam, propagated 
through a turbulent medium, and the vector, 
determining the center of gravity of star image or any 
reference source formed with the same optical system.  
In this case it was assumed that this may be the 
image of a reference source–beacon or of an optical 
beam reflected from an object.  In particular cases, 
these can be the images of a natural star, the image 
of a laser beam reflected diffusely or specularly. 

If we formulate a special optical problem on 
reflection or scattering of laser radiation from 
atmospheric inhomogeneities, a conclusion may be 
drawn that the problem on correction of the 
wavefront tilt of a stellar radiation with the use of a 
laser reference star and the problem of the control of 
the laser beam axis position based on real reference 
star tracking are mathematically identical or very 
close. 

Let us first state the main results obtained 
earlier in Ref. 3–8.  It is known that random shifts 
of the power center of gravity of an optical beam are 
characterized by the vector: 

ρc = 
1

P0⌡
⌠
0

x

 
 dξ (x $ ξ) ⌡⌠

 
    ⌡⌠
 
 d

2R I(ξ, R) ∇R n1 (ξ, R), (1) 

 

where n1(ξ, R) denotes the fluctuations of the 
refractive index at the point (ξ, R), I(ξ, R) is the 
field intensity at the point (ξ, R) from a source 
placed at the coordinate origin in the plane ξ = 0; x 
is the thickness of turbulence layer; 
 

P0 = ⌡⌠
 
    ⌡⌠
 
 d

2R I(0,R) .  (2) 

 

At the same time the stellar image random shifts, 
formed in the focal plane of the optical system (an 
equivalent thin lens with a focal length F and an area 

Σ = πR2
0) in the phase approximation, are given by the 

following expression (when amplitude fluctuations are 
neglected): 
 

ρ
F
 = $ 

F

kΣ ⌡⌠
 
    ⌡⌠
 
 

Σ  

d2ρ ∇ρ S(0,ρ) ,  (3) 

 

where k is the radiation wave number; S(0, ρ) denotes 
the optical wave phase fluctuations at a point ρ within 
the limits of the optical system aperture Σ.  In this case 
it is assumed that an entrance pupil of the receiving 
aperture is located in the plane ξ = 0.  For most of 
practical applications of the atmospheric turbulence the 
optical wave phase fluctuations are adequately 
described within the limits of smooth perturbation 
method, i.e., 

S(x, ρ) = k ⌡⌠
0

x

 
 dξ × 

× ⌡⌠
 
    ⌡⌠
 
 d

2 n (i, ξ) exp(iiργ) cos(i2(x $ ξ)γ/k),  (4) 
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where 
 

n1 (R, ξ) = ⌡⌠
 
    ⌡⌠
 
 d

2 n (i, ξ) exp($ iiR) ; 

γ = 
1 + iαξ
1 + iαx

 ;   α = 
1

ka2
0

 + 
i

f
 ; 

 

γ and α are the values determined by the parameters 
(a0 and f) of the optical beam formed.  In two 
special cases the parameter γ is real and can easily be 
determined.  For a plane wave γ = 1, for a spherical 
wave γ = ξ/x. 

The calculation of correlation between random 
vectors ρc and ρF was most difficult, while being, at 
the same time, of great interest: 
 
K = 〈ρc ρF〉 , 
 

where 〈...〉 denotes the averaging over the ensemble of 
random fluctuations of the function n1(R, ξ).  The 
papers8–9 describe a series of scenarios of optical 
experiments, which differ only in the expression for 
the random phase S in Eq. (3).  In the author’s 
opinion, the problem on estimating the application 
efficiency of a laser reference star for correction of 
random tilts in the natural stellar image, formed by a 
telescope, can be solved using the functions already 
calculated in Ref. 3–9. 

We characterize the random location of the star 
image formed in the telescope focal plane as the vector: 
 

ρpl
F

 = $ 
F

kΣ ⌡⌠
 
    ⌡⌠
 
 

Σ  

 d2 ρ ∇ρ Spl(0,ρ) ,  (5) 

 

where the superscript “pl” shows that this 
characteristic is calculated for the plane wave from a 
star.  For an arbitrary optical scenario3–5 of the laser 
reference star formation, the random vector 
describing the shift of the center of gravity of the 
reference star image can be described as follows: 
 

ρm = ρc + ρsph
F

 ,  (6) 
 

where ρsph
F

 is the location of a point source image.  It 
is assumed that the reference star is created by 
focusing laser radiation and the reference star, being 
formed, is presented as a point source.  By this is 
meant that a reference laser beam is rather wide 

(Ω = ka2
0/x,   Ω >   > 1) since only for a wide beam the 

focusing may be used, and an occurring reference 
source is not resolved by the telescope aperture. 

It is assumed that the optical problem on 
radiation reflection or scattering on atmospheric 
inhomogeneities is not considered. 

To change from linear measurements to angular 
ones we need to do the following normalization: 
 

<(ϕpl
F

)2> = 
<(ρpl

F
)2>

F2  , 

<ϕ2
c> = 

<ρ2
c>

 

x2  ,    <ϕc ϕF> = 
<ρc 

ρF>

xF
 . 

 
It is natural that residual distortions of the 

random tilts of the wave front from a star (under 
condition that the artificial reference star and the 
natural star are in one isoplanar region) angular of 
the correction based on the “direct” tracking of the 
laser reference star is characterized by the following 
variance: 
 

〈e2〉 = 〈(ρpl
F

 $ ρm)2〉 = 〈(ρpl
F

)2〉 + 〈ρ2
m

〉 $ 2〈ρpl
F

 ρm〉 .  (7) 

 
In this case variance of the measurement vector 

fluctuations and the correlation in Eq. (7) are: 
 

<ϕ2
m

> = <ϕ2
c> + <(ϕsph

F
)2> + 2 <ϕc ϕ

sph
F

> ,  (8) 
 

〈ρpl
F

 ρm〉 = 〈ρpl
F

 ρc〉 + 〈ρpl
F

 ρsph
F

〉 .  (9) 

 
By summing Eqs. (7), (8), and (9), one can 

obtain expression for all components of the variance 
〈e〉2.  The monostatic and bistatic optical systems 
differ by the last terms in Eqs. (7)–(9). 

All components of 〈e2〉 were obtained in 

Refs. 6, 7, except for the correlation <ρpl
F

 ρsph
F

> which 
is easily calculated.  One can show, Refs. 3–5, that 
in the diffraction approximation 
 

〈ρ2
c
〉 = π2x3 ⌡⌠

0

1

 
 dξ (1 $ ξ)2 × 

× ⌡⌠
0

∞

 
 dii

3 tn(i,xξ) exp{$ i2a2q2(ξ)/2} ,  (10) 

 
where tn(i,ξ/x) is the spectral density of the 
refractive index fluctuations.  When deriving 
Eq. (10) it is assumed that the reference laser beam 
is Gaussian, and 

 

q(ξ) = [ξ2Ω$2 + (1 $ xξ/f)2] , 
 
where Ω = ka2/x; a is the size and f is the curvature 
radius of phase front of the laser beam, forming the 
reference star.  For a focused (x = f) laser beam 
 

q(ξ) = [ξ2Ω$2 + (1 $ ξ)2]1/2 , 
 
if we use a wide laser beam (Ω >   > 1) then we have 
 

q(ξ) = (1 $ ξ) . 
As follows from calculations by formula (10) 
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<ϕ2
c> = 

<ρ2
c  

>

x2  = π2 0.033 27/6 c(1/6)a$1/3
0 x × 

× ⌡⌠
0

1

 
 dξ(1 $ ξ)5/3C2

n
(xξ)  (11) 

 
provided that (Ω = ka2/x >   > 1,   x = f ). 

The correlation 〈ρFρc〉 for plane (γ = 1) and 
spherical (γ = ξ/x) waves is 
 

<ρc ρF> = $ 
πF

P0
 ⌡⌠

0

x

 
 dξ(x $ ξ)γ ⌡⌠

 
    ⌡⌠
 
 d

2R <I(ξ, R)> × 

× ⌡⌠
 
    ⌡⌠
 
 d

2
ii

2t(i,ξ) exp($ iiR) × 

 

× exp($i2γ2R2
0/2 $ iγi2(x $ ξ)/k) ,  (12) 

 
i.e., it is expressed in terms of the laser beam mean 
intensity distribution 
 

⌡⌠
 
    ⌡⌠
 
 d

2R <I(ξ, R)> = πa2
0 exp($ k2a2

eff/4) .  (13) 

 
As a result we obtain 

 
<ρc ρF> = $2π2 0.033c(1/6)F × 

× ⌡⌠
0

x

 
 dξ(x $ ξ)γC2

n
(ξ)(γ2R2

0/4 + a2
eff)

$1/6,  (14) 

 

a2
eff = a2

0 ⎣
⎡

⎦
⎤(1 $ ξ/x)2 + Ω$2 + Ω$2

⎝
⎛

⎠
⎞1

2
DS(2a0)

6/5
 

 
for a wide Gaussian beam under not so strong 

turbulence ⎝
⎛

⎠
⎞Ω$2

⎝
⎛

⎠
⎞1

2
DS(2a0)

6/5
<   < 1  we obtain 

 
aeff = a0(1$ ξ/x) , 
 
where DS(2a0) is the structure function of the phase S. 

It should be noted that in practice one can 
introduce three quite different schemes of the 
reference source formation, namely, a monostatic 
scheme, a bistatic scheme, and the so-called 
intermediate scheme when it is necessary to take into 
account the correlation between the waves 
propagating along two spaced paths. 

 
MONOSTATIC SCHEME OF FORMING LASER 

REFERENCE STAR 

 

Let us formulate the problem on correction of 

the angular displacements of star image ϕpl
F

, formed 
with a telescope based on the measurements of 
angular displacements of the center of gravity of a 
laser reference star.  For a monostatic scheme 

ϕm = ϕc + ϕsph
F

 . 

 
It has already been demonstrated in a number of 

papers that the correction based on the “direct” 
correction, i.e., in the form: 

 

β = ϕpl
F

 $ ϕm , 

 
is not optimal.  The algorithm we recommended is as 
follows 

 

βmin = ϕpl
F
 $ Aϕm . 

 
We shall formulate the problem on such a 

correction as the problem of seeking extremum for 
the variance of the form 

 

〈β2〉 = 〈(ϕpl
F

 $ Aϕm)2〉 = 

= 〈(ϕpl
F
)2〉 + A2〈(ϕm)2〉 $ 2A〈ϕpl

F
ϕm〉 ,  (15) 

 
where the coefficient A is determined from the 
condition of achieving optimal correction.  This 
problem reduces to making preliminary calculations 
of the functional: 

 

A = <ϕpl
F
ϕm> / <ϕ2

m
> . 

 
In this case the following minimum occurs: 

 

<β2>min = <(ϕpl
F

)2> $ <ϕpl
F
ϕm>2 / <ϕ2

m
> .  (16) 

 

Correspondingly, when using our previous results, we 
have 
 

<(ϕpl
F
)2> = 

<(ρpl
F
)2>

 

F2  = 

= 27/6 π2 0.033c(1/6)R$1/3
0 ⌡⌠

0

∞

 
 dξ C2

n
(ξ) ;  (17) 

 

<ϕ2
m

> = 
<ρ2

m
>

x2  = 27/6 π2 0.033c(1/6) [R$1/3
0  + a$1/3

0  $ 

$ 27/6 (R2
0 + a2

0) ]
$1/6

⌡⌠
0

x

 
 dξ(1 $ ξ/x)5/3 C2

n
(ξ) ; (18) 

 

<ϕpl
F
ϕm> = 

<ρpl
F   

ρm>

xF
 = <ϕpl

F
ϕc> + <ϕpl

F
ϕsph

F
> ;  (19) 

 

<ϕpl
F
ϕc> = ($ 2 π2 0.033c(1/6)) × 

× 21/3
⌡⌠
0

x

 
 dξ C2

n
(ξ)(1 $ ξ/x)[R2

0 + a2
0(1 $ ξ/x)2]$1/6; 

 (20) 

<ϕpl
F
ϕsph

F
> = (2π2 0.033c(1/6))21/3R$1/3

0  × 

 ×⌡⌠
0

x

 
 dξ C2

n
(ξ)(1 $ ξ/x) [1 + (1 $ ξ/x)2]$1/6.  (21) 
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With the monostatic scheme of laser reference 
star formation we have, for the variance of residual 

distortions (16), the following expression 

 <β2>min = 27/6 π2 0.033c(1/6)R$1/3
0 ⌡⌠

0

∞

 
 dξ C2

n
(ξ) × 

 × 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

1 $ 21/3
 

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
0

x

 

 

dξ C2
n
(ξ)(1 $ ξ/x) ([1 + b2(1 $ ξ/x)2]$1/6

 $ [1 + (1 $ ξ/x)2]$1/6)

2

(1 + b$1/3
 $ 27/6(1 + b2)2)$1/6

⌡⌠
0

x

 

 

dξ C2
n
(ξ)(1 $ ξ/x)5/3

⌡⌠
0

∞

 

 

dξ C2
n
(ξ)

 .  (22) 

 
Here the ratio b = a0/R0 is introduced.  It is 

evident from Eq. (18) that the signal ϕm becomes 
practically noninformative at R0 = a0.  In the case of 

the exact equality R0 = a0 we have <ϕ2
m

> = 0. 

Therefore the correction at the level (16) is 
practically impossible.  Strictly speaking, at R0 = a0 
both the numerator and the denominator of the 
second component in Eq. (22) are equal to zero. A 
very interesting problem arises on seeking optimal 
ratio b = a0/R0 under conditions of minimum in 
residual angular displacements in the form (16).  It is 
evident that the domain of permissible values of the 
parameter b = a0/R0 is the interval (0, 1) since the 
case when b >   > 1 is not good, as regards the energy 

considerations, and at b = 1 the signal ϕm bears no 
information. 

The condition b < 1 corresponds to the condition 
R0 > a0.  This has made it possible to combine both 
components of Eq. (19) 
 

<ϕpl
F
ϕm> = (2π2 0.033c(1/6))21/3R$1/3

0 ⌡⌠
0

x

 
 dξ C2

n
(ξ)× 

× (1 $ ξ/x)[1 $ (1 + (1 $ ξ/x)2)$1/6] .  (23) 
 

As a result we derive the following expression 
for Eq. (16): 

 

 <β2>min = 27/6 π2 0.033c(1/6)R$1/3
0 ⌡⌠

0

∞

 
 dξ C2

n
(ξ)  × 

 ×  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

1 $ 21/3 
⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
0

x

 
 dξ C2

n
(ξ)(1 $ ξ/x) (1 $ [1 + (1 $ ξ/x)2]$1/6)

2

(1 + b$1/3 $ 27/6(1 + b2)$1/6)⌡⌠
0

x

 
 dξ C2

n
(ξ)(1 $ ξ/x)5/3

⌡⌠
0

∞

 
 dξ C2

n
(ξ)

 .  (24) 

 
It is easily seen that in expression (24) the 

expression before braces is the variance of the star 
angular shifts in the telescope in the absence of 
correction, i.e., 

<β2>min = <(ϕpl
F
)2> 

⎩
⎨
⎧

⎭
⎬
⎫

1 $ 
21/3f(x, C2

n
)

[1 + b$1/3 $ 27/6(1 + b2)$1/6]
, 

  (25) 
 

where b = a0/R0, and 
 

 

f(x,C2
n
) = 

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
0

x

 
 dξ C2

n
(ξ) [(1 $ ξ/x) (1 + (1 $ ξ/x)2)$1/6 $ (1 $ ξ/x)]

2

⌡⌠
0

∞

 
 dξ C2

n
(ξ)⌡⌠

0

x

 
 dξ C2

n
(ξ)(1 $ ξ/x)5/3

 . 

 
At the first stage it is necessary to calculate, 

using models of the turbulent atmosphere, the 

function f(x, C2
n
).  Since the values of this function 

for different altitude models of the turbulence and 
different altitudes x of the reference star formation 
 

differ from unity, this value determines the optimal 
value bopt.  We shall search for the optimal value 
bopt, on the one hand, for b ⊂ (0, 1) and on the 
other hand, based on the condition of positive 
determination of the following expression: 
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⎣
⎡

⎦
⎤

1 $ 

21/3f(x,C2
n
)

[1 + b$1/3
 $ 27/6(1 + b2)$1/6]

 > 0 . 

 

TABLE I.  Monostatic scheme.  Calculation of the 
function  f(x, C) for the altitude x of the reference 
star from 1 to 100 km (first column) in the three 
modes11 of the turbulent atmosphere.  Second, third 
and fourth columns correspond to the mode of the 
best, medium, and worst (in the turbulent sense) 
atmosphere. 
 

x, km f 

1 0.003281 0.0031231 0.0022437 
2 0.0051637 0.0045658 0.00308 
3 0.0063232 0.0054414 0.0035784 
4 0.0070861 0.0060538 0.0039453 
5 0.0076185 0.0065124 0.0042812 
6 0.0080089 0.0068728 0.0045981 
7 0.0083078 0.0071687 0.0049093 
8 0.0085447 0.0074169 0.0052123 
9 0.0087386 0.0076394 0.0055067 

10 0.0089015 0.0078375 0.0057905 
15 0.0094598 0.0086174 0.0070037 
20 0.0098224 0.0091708 0.0078867 
25 0.010091 0.0095794 0.0085215 
30 0.0103 0.0098887 0.0089916 
35 0.010475 0.010129 0.0093484 
40 0.010622 0.010318 0.0096303 
45 0.010746 0.010474 0.0098574 
50 0.010852 0.010603 0.010044 
55 0.010941 0.010711 0.0102 
60 0.01102 0.010804 0.010332 
65 0.011089 0.010884 0.010445 
70 0.01115 0.010953 0.010544 
75 0.011205 0.011014 0.010627 
80 0.011253 0.011065 0.010703 
85 0.011297 0.011113 0.01077 
90 0.011336 0.011156 0.01083 
95 0.011371 0.011195 0.010885 

100 0.011404 0.01123 0.010934 
 

It is natural to consider the correction efficient if 
the term in braces is less than unity.  Our calculations, 
based on various models of the turbulent atmosphere, 
show (Table I) that in the range of x values from 1 to 

100 km the function f(x, C2
n
) varies from 0.002 to 0.01.  

If the function f(x, C2
n
) is of the order of 0.01, then an 

effective correction is possible only when b ≤ 1, i.e., 
the laser beam size a0 turns out to be comparable with 
the telescope aperture R0.  It should be noted that from 
the point of view of power this correction in the 
monostatic scheme is ineffective although practically it 
is hoped that the high level of correction can be 
achieved. 

 

BISTATIC SCHEME OF THE REFERENCE  

STAR FORMATION 

 

For the bistatic scheme it is assumed that the 
last terms in Eqs.(8), (9) are lacking, i.e., 

<ϕ2
m

> = 
<ρ2

m
>

xF
 = <(ϕsph

F
)2> + <(ϕc)2 >, 

 

<ϕpl
F
ϕm> = 

<ρpl
F
ρm>

 

xF
 = <ϕpl

F
ϕsph

F
> . 

 

In the final analysis we have: 
 

<β2>min = <(ϕpl
F
)2> 

⎩
⎨
⎧

⎭
⎬
⎫

1 $ 
21/3f1(x,C2

n
)

[1 + b$1/3]
 ,  (26) 

 

where b = a0/R0, and 
 

f1(x,C2
n
) = 

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
0

1

 
 dξ C2

n
(xξ)(1 $ ξ)(1 + (1 $ ξ)2)$1/6

2

⌡⌠
0

∞

 
 dξ C2

n
(xξ)⌡⌠

0

1

 
 dξ C2

n
(xξ)(1 $ ξ)5/3

 . 

 

The calculations of the function f1(x,C2
n
) are 

presented in Table II.  For the bistatic scheme, as is 
seen from Eq.(26), any relationships between a0 and 
R0 are possible.  The correction is more efficient at 
larger b values.  It is reasonable that b >   > 1 cannot 
be practically realized, and for b = 2 we have 
 

<β2>min = <(ϕpl
F
)2>{1 $ 2$2/3f1(x,C2

n
)}. 

 
As in the case with the monostatic scheme the 

quality of correction based on bistatics, essentially 
depends on the altitude of a laser reference source 
and on the altitude profile of the structure constant 

of the atmospheric refractive index C2
n
. 

At the first stage of planning an adaptive system 
operation based on the use of laser reference source, it 

is necessary to calculate the functions f(x, C2
n
) and 

f1(x, C2
n
) based on models of the turbulent atmosphere.  

Since the values of these functions for various altitude 
models of turbulence and different altitudes x of the 
reference source location differ from unity, it is just 
these values that determine the optimal value of the 
parameter b = bopt.  For different models of altitude 
profile of the structure parameter of the atmospheric 

turbulence, the functions f(x, C2
n
) and f1(x, C2

n
) are 

calculated numerically.  As the calculations made using 
three models of the turbulence show,9 the function 

f(x, C2
n
) has quite different behavior depending on the 

reference star height.  The difference is due to different 
height behavior of the turbulence in the three models 
used.  The calculations also show that this difference in 

f(x, C2
n
) behavior takes place at low altitudes of the 

reference source.  Therefore one should expect that this 
function is sensitive to variations in the height behavior 
of the structure constant of the refractive index just in 
the case of low altitudes of the reference source.  The 
value in braces in Eq.(26) is minimized based on the 

data on the function f(x, C2
n
). 
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TABLE II.  Bistatic scheme.  Calculation of the 
function f(x, C) for the altitude of the reference 
star x from 1 to 100 km in the three modes11 of the 
turbulent atmosphere. 
 

x, km f 

1 0.5077 0.42758 0.27629 
2 0.62776 0.52529 0.33881 
3 0.66459 0.57396 0.39801 
4 0.68036 0.60464 0.45814 
5 0.68998 0.62874 0.51569 
6 0.69767 0.65005 0.5674 
7 0.70473 0.66941 0.61162 
8 0.71155 0.68679 0.64735 
9 0.71818 0.70195 0.67598 

10 0.72457 0.71514 0.69835 
15 0.75061 0.75572 0.75467 
20 0.76773 0.77272 0.77327 
25 0.7798 0.78114 0.78136 
30 0.78741 0.7858 0.78557 
35 0.79232 0.78862 0.78823 
40 0.79554 0.79024 0.7894 
45 0.79774 0.79144 0.79043 
50 0.79931 0.79231 0.79117 
55 0.80026 0.79293 0.79171 
60 0.80111 0.79342 0.79213 
65 0.80178 0.7938 0.79246 
70 0.80229 0.7941 0.79273 
75 0.80272 0.79435 0.79274 
80 0.80306 0.79437 0.79291 
85 0.8335 0.79453 0.79305 
90 0.80359 0.79466 0.79316 
95 0.8038 0.79478 0.79326 

100 0.80399 0.79488 0.79336 

 
Of course, the variations can occur in true value 

of the integral profile C2
n
(ξ).  Variations of the values 

 

Δ = 
⎩
⎨
⎧

⎭
⎬
⎫

1 $ 
21/3f(x,C2

n
)

[1 + b$1/3 $ 27/6(1 + b2)$1/6]
 , 

 

Δ1 = 
⎩
⎨
⎧

⎭
⎬
⎫

1 $ 
21/3f1(x,C2

n
)

[1 + b$1/3]
 

 

are estimated based on the difference between the 

values of the functions f(x, C2
n
) and f1(x, C2

n
) in the 

second, third and fourth columns of Tables I and II.  
In this case the absolute error in determining the value 
Δ is equal numerically to relative error in determining 
the functions, i.e., δ = Δ(f + δf) $ Δ(f) = δf/f.  
Starting with this equation, one can obtain the results 
that for the altitude x < 15 km the residual variance of 
the natural star image jitter due to the error of 
 

selection of the structure constant profile is of the 
order of 15 per cent of the value of the initial variance 

〈(ρpl
F
)2〉; for the altitude range 20 km > x > 40 km this 

error is  no more than 4–6 per cent; for altitudes 
exceeding 60 km this error is no more than 2 per cent. 

Thus, if we compare the variance of the stellar 
image jitter (for a plane wave) and the variance of 
the image jitter of a laser reference star formed by a 
narrow focused beam, it appears that the minimum of 
the functional (16) can be obtained by selecting the 
coefficient A. 

The smoothing coefficient A is determined both 
by the ratio of the beam size a0 and the telescope R0, 
and by the factor 
 

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
0

x

 
 dξ C2

n
(ξ)[(1 $ ξ/x) (1 + (1 $ ξ/x)2)$1/6 $ (1 $ ξ/x)]

2

⌡⌠
0

x

 
 dξ C2

n
(ξ)(1 $ ξ/x)5/3

⌡⌠
0

∞

 
 dξ C2

n
(ξ)

 , 

 

which can be determined using a model of C2
n
(xξ). 

The time correlation function of cross-correlation 
of the data of measurements and the corrected error 
of stellar image jitter are also analyzed in Ref. 3. 
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