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Wavefront dislocations generated by vortex flux of light energy in the 
vicinity of points with zero field intensity are studied on the basis of a solution to 
the problem of retrieval of the phase distribution of an optical beam from the 
measured intensity distribution (the phase problem in optics).  Reasons for 
ambiguity of the phase problem solution are discussed.  Concepts of the vortex and 
potential parts of the phase are introduced.  An analytic formula for retrieval of 
the potential phase from the measured intensity distribution of optical speckle-field 
has been obtained.  It has been suggested to use the potential phase for correction 
of singular phase distortions with optical adaptive systems.  

 

INTRODUCTION 

 
Wavefront dislocations in optical speckle-fields1,2 

have been the object of investigation for researchers 
engaged in the problem of the wave propagation 
through the atmosphere and an indicator of a number of 
phenomena and processes in nonlinear optics3,4 and 
laser physics. Dislocations create main obstacles to the 
phase aberration compensation with adaptive optical 
systems.5 Moreover; a new lead of research connected 
with the use of the dislocations for diagnostics of 
natural media6 is formed.  In the present paper, we 
consider a possibility to reveal the dislocations on the 
basis of a solution to the problem of retrieval of the 
wave phase from the measured intensity distribution 
I(ρ0, z), ρ = {x, y}.  Our approach involves the 
reconstruction of the Poynting vector components using 
the differential eikonal and transfer equations 
describing the wave propagation in a medium, 
determination of the transverse phase derivative, and 
phase retrieval from its partial derivatives (wavefront 
slopes) on the entrance pupil.   

 

THEORETICAL GROUNDS 
 

The propagation of a monochromatic optical wave 
U(ρ, z) is described by the parabolic equation 

 

2 ik 
∂U
∂z  + Δ⊥U + k2 ε∼(ρ, z) U(ρ, z) = 0 (1) 

 

in the half-space z ≥ 0 filled with a refractive medium 

with the permittivity ε∼(ρ, z).  Introducing the phase 
S(ρ, z) and substituting the field U(ρ, z) = 

= {I(ρ, z)}1/2 exp{iS(ρ, z)} into Eq. (1), we obtain the 
system 

 

2 kI2 
∂S
∂z + I2 {∇⊥ S}2 = k2 I2 ε∼(ρ, z) + 

+ 
1
2
 I Δ⊥ I(ρ, z) $ 

1
4
 {∇⊥ I(ρ, z)}

2, (2) 

 

∇⊥ {I(ρ, z) ∇⊥ S} = $ k 
∂I
∂z , (3) 

 

where ε∼(ρ, z) = (ε $ <ε>)/<ε>, k = 2π <ε>/λ, <ε> 
is the mean value of the permittivity, λ is the 

wavelength, Δ⊥ = ∇⊥
⋅∇⊥, ∇⊥ = l 

∂
∂x + m 

∂
∂y.   

Equation (3) is the differential form of the energy 
conservation law for the transverse component of the 
Poynting vector L {L⊥, k I }, L⊥ = I(ρ, z) ∇⊥ S(ρ, z).  
The vector field L⊥ can be represented as a sum of the 
potential L⊥p and vortex L⊥v  parts7 

 

I(ρ, z) ∇⊥ S = I(ρ, z) ∇⊥ Sp + I(ρ, z) ∇⊥ Sv, (4) 
 

where Sp(ρ, z) is the potential phase and Sv(ρ, z) is 
the vortex phase.  It follows from the general principles 
of the field theory that the potential vector field can be 
expressed in terms of the potential ϕ (Ref. 7) 

 

L⊥p = grad ϕ, (5) 
 

and the divergence of the vortex field is equal to zero, 
i.e., ∇⊥⋅L⊥v = 0.  Therefore, only the potential part of 
the Poynting vector can be reconstructed with the use 
of transfer equation (3).  Substituting Eq. (5) into 
Eq. (3), we obtain the Poisson equation for the 
potential 

 

Δ⊥ ϕ = $ k 
∂I
∂z (ρ, z). (6) 

 

A solution of this equation with the boundary condition 
on the beam periphery ϕ(∞, ∞, z) = 0 is the solution of 
the Dirichlet classical problem.7  Without specifying 
the expression for ϕ we write down directly the 
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relationship for the potential part of the Poynting 
vector using Eq. (5) 

 

L⊥p(ρ, z) = $ 
k
2π ⌡⌠ 

 
   ⌡⌠ 

 

$∞

   

∞

dξ dη  
∂
∂z I(ξ, η, z) × 

 

× 
l (x $ ξ) + m (y $ η)

(x $ ξ)2 + (y $ η)2  . (7) 

 

From Eq. (7) we derive the differential equations 
for the potential energy vector lines in the 3-D space   

 

dy

dz
 = $ 

1
2π 

∂
∂z 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

⌡⌠ 

 
   ⌡⌠ 

 
dξ dη 

I (ξ, η, z) (y $ η)

(x $ ξ)2 + (y $ η)2  , (8) 

 

dx
dz

 = $ 
1
2π 

∂
∂z 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

⌡⌠ 

 
   ⌡⌠ 

 
dξ dη 

I (ξ, η, z) (x $ ξ)

(x $ ξ)2 + (y $ η)2  , (9) 

 

dy

dx
 = 

∂
∂z 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

⌡⌠ 

 
   ⌡⌠ 

 
dξ dη 

I (ξ, η, z) (y $ η)

(x $ ξ)2 + (y $ η)2 

∂
∂z 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

⌡⌠ 

 
   ⌡⌠ 

 
dξ dη 

I (ξ, η, z) (x $ ξ)

(x $ ξ)2 + (y $ η)2 

 . (10) 

 

This raises the question of unambiguity of the 
phase retrieval from the relationship 

 

Lp(ρ, z) = I(ρ, z) ∇Sp   (11) 
 

for the potential component of the Poynting vector. 
Light diffraction is accompanied with anomalous 

wavefront behavior in the vicinity of points with zero 
intensity.8  If signs of the real and imaginary 
components of the complex field change to opposite 
ones after crossing the point or line with zero intensity, 
the anomaly will be manifested through the phase jump 
by π.  The phase jumps observed when the dark rings of 
diffraction minima having radius rd are crossed in the 
focal plane8 are examples.  The phase of such a speckle-
field can be considered as a generalized function whose 
partial derivatives at the point {x, y} have the 
following form: 

 

∂S
∂x = 

⎩
⎨
⎧

⎭
⎬
⎫∂S

∂x  + π cos(nx) δ( x2 + y2 $ rd), 

 

∂S
∂y = 

⎩
⎨
⎧

⎭
⎬
⎫∂S

∂y  + π cos(ny)δ( x2 + y2 $ rd), 

 

where n is the exterior normal to the ring of radius rd, 

⎩
⎨
⎧

⎭
⎬
⎫∂S

∂x  and 
⎩
⎨
⎧

⎭
⎬
⎫∂S

∂y  are the piecewise-continuous parts of the 

derivatives.  It was shown in Ref. 8 that in the vicinity 
of the ring the following relation is true: 

 

I(x, y) ∼ ( x2 + y2 $ rd)
2. 

 

From the theory of generalized functions, we have 
 

( x2 + y2 $ rd)
2 δ ( x2 + y2 $ rd) = 0, 

and consequently singularity in the phase derivative in 
Eq. (11) does not influence the components of the 
Poynting vector Lp.  So, only the piecewise-continuous 
part of the derivative can be determined from Eq. (11). 
Therefore, we can obtain the œsmoothedB version of the 
phase Sp(ρ, z).  To describe the jumps, additional 
information is required, for example, the information 
carried by the analytic extension of I(ρ, z) to the 
complex plane.9 

Using the integral representation for the phase 
retrieved from the wavefront slopes,10 we obtain from 
Eqs. (7) and (11)  

 

{Sp(ρ, z)} = 
k

4π2 ⌡⌠

 D

 
 

 
   ⌡⌠ 

 d2 ρ0

I(ρ0, z)
 × 

 

× 
∂
∂z ⌡⌠ 

 
   ⌡⌠ 

 

$∞

   

∞

d2ρ′0 
I(ρ′0, z) (ρ0 $ ρ′0) (ρ $ ρ0)

(ρ0 $ ρ′0)2 (ρ $ ρ0)2  . (12) 

 

Integration in Eq.(12) is carried out over the 
entrance pupil D bounded by the contour c.  If on the 
pupil boundary the phase Sc (ρ, z) is nonzero, the 
following line integral should be added into the right 
side of Eq. (12): 

 

1
2π ⌡⌠

c
 

 Sc (ξ, η, z)
(ξ $ x)2 + (η $ y)2 [(ξ $ x) dη $ (η $ y) dξ].  

  (13) 
For the vortex component of the Poynting vector, 

we succeeded to derive the expression  
 

Lv (ρ, z) = 
1
2π ⌡⌠ 

 
   ⌡⌠ 

 

$∞

   

∞

rot Lv (ξ, η, z) × 

 

× 
⎣
⎡l 

∂
∂y ln 

1

(x $ ξ)2 + (y $ η)2
 $  

 

$ 
⎦
⎤m 

∂
∂x ln 

1

(x $ ξ)2 + (y $ η)2
 dξ dη (14) 

 

on the basis of Eq. (6) for the vector-potential.  As a 
result, for the phase we obtained the following integro-
differential equation: 

 

S(ρ, z) = 
k

4π2 ⌡⌠

 D

 
 

 
   ⌡⌠ 

 
 

d2ρ0

I(ρ0, z)
 × 

 

× 
∂
∂z ⌡⌠ 

 
   ⌡⌠ 

 

$∞

   

∞

d2ρ′0 
I(ρ′0, z) (ρ0 $ ρ′0) (ρ $ ρ0)

(ρ0 $ ρ′0)2 (ρ $ ρ0)2  +  

 

+ 

1
4π2 ⌡⌠

 D
 

 
   ⌡⌠ 

 d2ρ0

I(ρ0, z)
 
∂
∂z ⌡⌠ 

 
   ⌡⌠ 

 

$∞

   

∞

d2ρ′0 ∇I(ρ′0, z) × 

 

× ∇S(ρ′0, z) 

(ρ $ ρ0) × (ρ0 $ ρ′0)
(ρ0 $ ρ′0)2 (ρ $ ρ0)2 . (15) 
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Abramochkin and Volostnikov11 failed to solve 
Eq. (15) by the iteration technique without its 
complement by reference values of ∇S containing 
information on vorticity at least at the finite number of 
points.  In principle, such information can be obtained 
from Eq. (2).  However, this problem has not yet been 
solved. So we dwell on possible use of Eq. (12) for 
diagnostics and correction of the phase with adaptive 
optics systems. 

 

ENERGY VECTOR LINES, PECULIARITIES OF 

THE VORTEX PHASE, AND RETRIEVAL OF THE 

POTENTIAL PHASE 

 
To investigate the properties of the optical specle-

field, we choose as an object a Laguerre$Gaussian 
optical beam excited in a resonator with round mirrors.  
In this case, the initial field distribution on the 
radiating aperture has the form 

 

U(r, φ) = ⎝
⎛
⎠
⎞r

a

m

 exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
r 

2

2a 

2 $ i 
k
2F

 r 

2  × 

 

× Lm

n ⎝
⎛

⎠
⎞r 

2

a 

2  exp {i m φ}, (16) 

 

where r = x2 + y2 and φ = arc tan y/x are the polar 
coordinates, a and F are the beam radius and the 

wavefront curvature on the radiating aperture, Lm

n(x) is 
Laguerre polynomial.  For the fist axial asymmetric 
mode (m = 1, n = 0) at the distance z from the source 
in the vacuum (ε = 0) the field after substitution of 
Eq. (16) into the Kirchhoff integral has the form 

 

U(x, y, z) = q Ω (1 + Ω2)$3/2 g1/2 × 
 

× exp 
⎩
⎨
⎧
3i arctan Ω + 

i Ω
2

 
x 2 + y 2

(1 + Ω2)
 $ 

 

$ 
⎭
⎬
⎫

i arctan 
Ω2 x 2 $ 1

Ω (1 + Ωxy)
 ,  (17) 

 

q = exp 
⎩
⎨
⎧

⎭
⎬
⎫

$ 
Ω2 (x 

2 + y 

2)
2(1 + Ω2)

 , 

 

g = Ω2(1 + Ωxy)2 + (Ω2x 

2 $ 1)2, 
 
where x and y are the Cartesian coordinates normalized 
to a, Ω = ka2/z is the diffraction parameter.  It is clear 
from Eq. (17) that in the beam cross section, the 
intensity equals zero at the points x = 1/Ω, y = $1 and 
x = $1/Ω, y = 1.  The intensity distribution is shown 
in Fig. 1. 

Calculating the intensity I(ρ, z) and rot(I ∇S) 
with the use of Eqs. (17), (14), and (12), we obtain 
the potential and vortex components of the Poynting 
vector 

L⊥p = 
Ω3

(1 + Ω2)3 q
2 {l x + m y} , (18) 

 

L⊥v = 
Ω3

(1 + Ω2)3 q
2 {l [fx + y(Ω2 x 2 $ 1) $ 

 

$ 2Ωx (1 + Ωxy)] + m [fy + x (Ω2 x 2 $ 1)]}, (19) 
 

f = g/(1 + Ω2) $ 1. 
 

 
FIG. 1. Beam intensity distribution in the transverse 
plane. 

 

Relationships (18) and (19) determine the 
potential and vortex energy flux densities of the vector 
field.  Using the differential equations for the potential 
energy vector lines 

 

dy/dz = Ω y/[k (1 + Ω2)],  (20) 
 

dx/dz = Ω x/[k (1 + Ω2)],  (21) 
 

dy/dx = y/x,  (22) 
 

and for the vortex energy vector lines 
 

dy
dz

 = 
Ω2

k
  

f y + x(Ω2 x 2 $ 1)
g

 ,  (23) 

 

dx
dz

 = 

Ω2

k
 

f x + y (Ω2
 x 

2
 $ 1) $ 2Ωx (1 + Ωxy)

g
 , (24) 

 

dy
dx

 = 
f y +

 

x (Ω2
 x 

2
 $ 1)

f x + y (Ω2x2
 $ 1) $ 2Ω x(1 + Ω xy)

  (25) 

 

for our example we construct a family of curves, 
with tangents at each point coinciding with the 
direction of the vector L.  In Fig. 2 such curves are 
drawn in the plane z = const.  

It is clear from Fig. 2a that only one singularity is 
seen for the potential vector field (the singularities can 
be analyzed on the basis of the theory constructed to 
study the phase trajectories of autonomous dynamic 
system12). This singular point is the unstable node at 
the center of coordinates where the numerator and 
denominator in the right side of differential equation 
(22) simultaneously vanish.  Figure 2b shows the 
energy vector lines in the transverse section of the 
vortex vector field L⊥v. Here, three singular points can 
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be seen.  The first singularity is at the beam axis and is 
called the saddle (x = 0, y = 0), the second and third 
singularities are the complex foci at the points with 
zero intensity.  Figure 2c shows the energy vector lines 
of the total vector field L⊥. 

Figure 3 shows the potential phase {Sp (ρ, z)} 
(case a) retrieved by formula (12), vortex phase Sv 

(case b), and total phase S (case c).  It is clear from 
Fig. 3 that the potential wavefront is the paraboloid of 
revolution, and the singularities of the vortex vector 
field are the centers of vortex dislocations with 
opposite twists separated by the saddle, where 
∇S(ρ, z) = 0.  The total wavefront is the superposition 
of the potential and vortex wavefronts. 

 
 a b    c 

FIG. 2. Energy vector lines for the potential (a), vortex (b), and total (c) vector fields. 

 
 a b    c 

FIG. 3. Potential (a), vortex (b), and total (c) phases with corresponding vector lines. 

 

DISCUSSION 

 
In the optical adaptive systems with phase 

conjugation, the problem arises of the correction of 
turbulent wave distortions. The correction of phase 
dislocations at points with zero intensity is a very 
difficult problem. Due to the complexity of the 
wavefront retrieval in the region of dislocations with 
the use of control devices$correctors a problem arises to 
obtain the smoothed approximation of the wavefront 
close to the real one, for example, by the root-mean-
square criterion.  In particular, a similar problem was 

solved in Refs. 13 and 14.  The potential phase can be 
considered as such a regularized approximation of the 
wavefront.  The regularization of this type converts the 
phase being a generalized multidimensional function 
into an ordinary aberration phase without singularities.   
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