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Efficiency and speed of correction for thermal blooming with the use of the 
simplex method, multidither  algorithm, and modified multidither algorithm are 
compared.  These algorithms can be considered as methods for finding an extremum 
of a function, so their characteristics are compared for the problem of finding a 
maximum of a given analytic function.  The conclusions drawn here are verified by 
way of examination of the beam control in a linear medium (problem of optimal 
beam focusing) and beam correction for thermal blooming. 

 

1. INTRODUCTION 
 
Because a scheme of an adaptive optics system is 

determined by an algorithm for control, the primary 
problem at the initial stage of system design is a choice 
of the correction algorithm. In the literature, we can 
find the description of such algorithms as wave front 

inversion,1 phase conjugation,2 multidither algorithm,3 

a priory correction,4 and simplex method.5  
All the methods listed above suffer from 

drawbacks, so the field of their application is limited. 
In particular, the drawback of phase conjugation is 
instability of correction when compensating for 

aberrations of intense laser beams,6 whereas the sharp 
decrease of the correction speed with the increase of the 
degrees of freedom of an adaptive mirror should be 
considered as a drawback of the gradient methods. 

Stability specific to the gradient algorithms and 
high speed of control are characteristic features of the 
simplex method whose algorithm was developed and  
 

compared with conventional methods by Chesnokov et 
al.5,7,8 They have demonstrated the advantages of the 
simplex method by numerical simulation.  

In the similar numerical experiments, we obtained 
slightly different results. In particular, we found out 
that by optimizing the multidither algorithm its speed 
can be considerably increased. Furthermore, as a result 
of the multidither algorithm modification proposed in 
Ref. 9 an algorithm can be developed with the 
parameters close to that of the simplex method. 

From this short overview it is seen that the 
problem of the choice of an algorithm for correction of 
atmospheric aberrations has not yet been adequately 
solved, so in the present paper we compare some 
methods of compensation for thermal blooming.  

 

2. MODEL OF AN ADAPTIVE SYSTEM 
 

Schematic representation of an adaptive optics 
system whose model was used in numerical experiments 
is shown in Fig. 1. 

 
 

FIG. 1. Block diagram of the adaptive system:  laser beam (1), adaptive corrector (2), generator of control signals 
(3), input system for data characterizing the field distribution (4), object of focusing (5), distributed thermal lens 
simulated by a set of screens (6). 
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In the approximation of stationary refraction,  
the radiation propagation is described by the  

formulas 1,2,3: 
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The first equation describes the propagation of 
radiation in the parabolic approximation, and the 
second equation specifies the interaction of radiation 
with a medium.  Here, E is the field complex 
amplitude, V is the speed of wind (assumed constant 
for our problem), T is the temperature of the medium, 
and the other designations are commonly used. 

It was assumed that the beam propagated along 
the OZ axis of the coordinate system, the diffraction 
length zd was taken as a spatial scale in the direction of 
propagation, and the initial radius of the beam in the 
transverse direction was a0. 

Nonlinear interaction of the beam and the medium 
is characterized by the parameter 
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It should be pointed out that the time variable in 
its explicit form is absent in the quasistationary 
approximation used here to describe the interaction. In 
this approach, a simple numerical model can be 
applied, but the speed of control can be characterized 
only indirectly. So for the examined problem, the 
number of iteration steps required to reach the 
extremum was used as a parameter characterizing the 
speed of control (to be more precise, the number of the 
objective function calls in the process of control).  

An adaptive mirror was simulated by a set of the 
lowest-order Zernike polynomials (tilt, defocusing, and 
astigmatism, i.e., three degrees of freedom). We also 
used a model of an elastic plate deformed by four or 

eight actuators.10 
 

3. ALGORITHMS FOR BEAM CONTROL 
 

Multidither algorithm 
 

By this algorithm, a transition from iteration (n$1) 
to iteration n was made according to the formula 
 

Fn = Fn$1 + α grad J , (3) 
 
where Fn and Fn$1 are the vectors of the control 
coordinates at iteration steps n and (n $ 1), J is the 
objective function, grad is the gradient of the objective 
function calculated with respect to the control 
coordinates, and α is the gradient step size, which was 
decreased at unsuccessful iterations, when J was 
decreased. 

When we solve the optical problem, as components 
of F we take the coefficients of polynomials or shifts of 
actuators of the mirror depending on the model of an 
adaptive corrector. As the objective function J, we take 
the focusing criterion proportional to the radiation 
power incident on a receiving aperture with the given 
radius. 

The multidither algorithm is based on the gradient 
method of finding an extremum (the trial variation 
method), so with the use of formula (3) we have 
considered a problem of finding the maximum of an N-
dimensional analytic function.  In this case, the 
components of the vector F are the coordinates of the 
current point and the criterion J is the value of the 
function in this point. 

 
Modification of the multidither algorithm 

 

In this algorithm, iterations are performed by the 

formula9 
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where sign is the signum function. This means that 
derivatives ∂J/∂xi determine only the direction of 
motion, the displacement at each iteration is completely 
determined by the parameter α, i.e., iteration steps are 
identical, and the step size does not depend on the 
gradient of the function. 

 
Simplex method 

 
In this algorithm, the extremum is approached by 

successive reflection of the figure called a simplex. In 
the N-dimensional space, this figure has (N+1) 
vertices. In 1D case, simplex is a segment of a straight 
line, in 2D case it is a triangle, and in 3D case it is a 
tetrahedron. 

 

 
FIG. 2.  Simplex approaching the extremum. 
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A step from simplex (n$1) to simplex n is made by 
mirror reflection of the œworstB vertex in a face 
without this vertex. The center of the simplex 
approached the extremum as a result of successive 
reflections of the œworstB vertices. An example of 
simplex reflections is shown in Fig. 2 for two-
dimensional objective function. Here, the œworstœ 
vertex for the first triangle is b, so it reflects in the 
face c $ a. 

 

4. DETERMINATION OF THE ALGORITHMIC 
PARAMETERS TAKING THE PROBLEM OF 

FINDING THE EXTREMUM OF AN ANALYTIC 
FUNCTION AS AN EXAMPLE 

 

Prior to an analysis of correction for nonlinear 
aberrations, let us estimate the speed of the algorithms 
taking a problem of finding the extremum of the 
following analytic function: 
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as an example.  A search was made in the domain of 
positive arguments (search for the maximum). All the 
algorithms described in Section 3 were considered. The 
number of the function dimensions was varied from 3 to 
8. 
 

 
a 

 
b 

FIG. 3. Dependence of the speed of control on the 
parameter α (the region of the optimal values of this 
parameter is hatched on the figure) for 1D (a) and 8D 
(b) objective functions. Curve 1 is for the trial 
variation method, curve 2 is for the modified trial 
variation method, and curve 3 is for the simplex 
method. 

Figure 3 illustrates the dependence of the number 
of function calls Ncall on the gradient step size α for 
1D and 8D functions. It can be seen that in both cases 

the behavior of Ncall is almost the same. In 1D case, 
the lowest speed is specific to the trial variation 
method (curve 1 in Fig. 3a).  The speed of the simplex 
method is close to that of the modified trial variation 
method (curves 2 and 3).  At the same time, there is an 
interval of α where the speed of all algorithms is 
maximum (but even in this interval the speed of the 
trial variation method is minimum).  This means that 
to obtain the high speed of control, the gradient step 
size should be optimized for each algorithm. 
Optimization is most important for the trial variation 
method, because for this method Ncall sharply increases 
outside  the interval of optimal values of α, and the 
interval itself is narrowest.  In the case of the 8D 
function, the number of objective function calls 
increases, but all characteristic features, pointed out 
earlier, remains. 

 

 
a 

 
b 

 

FIG.4. Dependence of the speed of control on the 
dimension of the basis of control. Numbers of curves 
and dimensions of the objective functions are the same 
as in Fig.3. 

 
Dependence of Ncall on the dimension of function 

(5) when the number of independent coordinates was 
varied from 1 to 8 is shown in Fig. 4. Values of α were 
taken from the optimal interval (Fig. 4a). The case of 
nonoptimal values of the parameter α was also 
considered (Fig. 4b). We can see that the sharpest 
increase of Ncall is specific to the trial variation 
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method.  The other two algorithms have almost the 
same speeds of control that decrease slightly when the 
number of dimensions increases from 1 to 8. 

We also considered the dependence of the speed of 
control on precision of finding the extremum. The 
results of our analysis are shown in Fig. 5. Figure 5a is 
for optimal values of the parameter α and Fig. 5b $ for 
nonoptimal values.  In both cases, function (5) was 
chosen to be eight dimensional. 

 

 
a 

 
b 

FIG. 5. Dependence of the speed of control on the 
precision of finding the extremum. Numbers of the 
curves and dimensions of the objective functions are 
the same as in Fig.3. 

 

As the precision increases, Ncall increases most 
sharply for the trial variation method. The results 
obtained for the simplex method are close to that for 
algorithm (4).  It should be pointed out here that with 
the decrease of precision, speeds of algorithms in and 
out of the interval of optimal values of α differ only 
slightly.  So if the precision of finding the extremum is 
low, optimization of the gradient step size is not 
obligatory.  

 
5. CONTROL OF A BEAM IN A LINEAR MEDIUM 

 
Adaptive control of a beam in a linear medium (i.e., 
when the parameter of nonlinearity R specified by 
Eq. (2) is equal to zero) means a search for a phase 
surface with the extremum values of the objective 
function (in the considered example, the maximum 
criterion of focusing).  A solution of this problem 
enables us on the one hand, to verify the conclusions 
drawn in Section 4, on the other, to determine 

approximately the optimal parameters for beam control 
in a nonlinear medium.  

 

 
FIG. 6. Speed of control in a linear medium as a 
function of the parameter α. Curve 1 is for the 
multidither algorithm, curve 2 is for the modified 
multidither algorithm, and curve 3 is for the simplex 
method. 

 

 
FIG. 7. Speed of control in a linear medium as a 
function of the number of degrees of freedom of an 
adaptive corrector.  Numbers of curves are the same as 
in Fig. 6.  

 
In Figs. 6 and 7, the dependence is illustrated of 

the number of function calls on the parameter α and on 
the dimension of the basis of control.  As in the 
previous case (finding of the extremum of an analytic 
function), we can identify the interval of optimal 
values of α where the algorithms have approximately 
equal speeds of control. When α ≠ αopt, Ncall increases 
sharply, and the lowest speed of control has the 
multidither algorithm.  

As the number of dimensions of the basis of 
control increases, the sharpest increase of the number of 
calls is observed once more for the multidither 
algorithm (see Fig. 7). 

The other characteristics are illustrated by the 
results presented in Table I. The data are given for the 
simplex method.  The multidither and modified 
multidither algorithms have almost the same 
parameters.  

We can see that the efficiency of control depends 
on the type of employed adaptive corrector. For 
example, for a mirror with four actuators, the criterion 
J is equal to 0.64 and for a set of Zernike polynomials, 
J = 0.79. The next peculiarity is the dependence of J on 
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α, which manifests itself when we use the adaptive 
mirror. In the case of the mirror with four actuators 
when we go from nonoptimal to optimal values of α, 
the criterion J increases from 0.57 to 0.64 (by 10%). 
The increase for the mirror  with eight actuators is 21% 
(from 0.51 to 0.66). 

 
TABLE I. The results of the simplex method 
application for beam control in a linear medium. 
 

Corrector model:  a set of polynomials 

α 0.05 0.1 0.3 0.5 0.7 0.9 1.1 
Ncall 76 41 27 28 26* 34 31 

J 0.79 0.79 0.79 0.79 0.79 0.79 0.79

Corrector model:  a mirror with 4 actuators 

α 0.2 0.5 1 5 15 18 20 
Ncall 80 63 41 26* 33 21 37 

J 0.57 0.63 0.64 0.64 0.64 0.64 0.64

Corrector model:  a mirror with 8 actuators 

α 0.1 0.2 0.5 1 5 10 12 
Ncall $ 68 62 24* 36 51 $ 

J $ 0.51 0.55 0.54 0.65 0.66 $ 

* Minimum number of the objective function calls 
 

To explain this peculiarity, we should consider 
the condition of the control termination. 
Mathematically, the algorithms are organized so that 
the control is terminated when the increment to the 
objective function between iterations (n$1) and n is 
less than or equals to ε (that is, the objective 
function does not increase).  So if the parameter α is 
nonoptimal and the objective function is flat topped, 
the rate of growth of J is slowed down with the 
increase of the iteration order as the extremum is 
approached.  When ΔJ < ε, the control is terminated 
notwithstanding the fact that the extremum has not 
yet been reached. It seems that this reason explains 
the decrease of the criterion J when the parameter α 
is nonoptimal. 

 

6. CORRECTION FOR STATIONARY 
ABERRATIONS OF LASER BEAMS 

 

The main features of control in the linear medium 
are retained when a thermal lens develops on a beam 
propagation path (the data are presented in Table II). 
But the resulting values of the criterion of focusing are 
slightly lower than in the linear medium (i.e., 
correction is incomplete), and the number of function 
calls is greater. As in the previous case, it is possible to 
identify the interval of optimal gradient step size and 
regions where the parameter α is nonoptimal.  When 
α = αopt, the simplex method and the modified 
multidither algorithm have almost the same speeds of 
control. Out of this interval, the speed of correction 
decreases sharply. 

For α = αopt, the highest speed of control was 
obtained for the multidither algorithm. Using this 
method, only 28 calls of the objective function were 
needed to ascend the hump (see the fourth column of 

Table II). For other algorithms, Ncall is almost twice 
greater than for this method. But the resulting values 
of J for the multidither algorithm are lower, i.e., it is 
possible to assume that for the given step size the hump 
was not reached and the control was terminated 
according to the condition of interruption. If the step 
size increases, the values of J also increase, but the 
speed of control decreases. 

 
TABLE II. Parameters of algorithms intended for 
correction of thermal blooming.  The active element is 
a mirror with 8 actuators, R = $20. 
 

Simplex method 

α 0.5 2 3 5 
Ncall 75 48 43* 53 

J 0.37 0.38 0.40 0.42 

Modified multidither algorithm 

α 0.1 1 2 2.5 
Ncall 118 55 46* 55 

J 0.35 0.40 0.40 0.39 

Multidither algorithm 

α 20 40 60 140 
Ncall 37 28 37* 91 

J 0.37 0.37 0.38 0.39 
* Minimum number of the objective function calls 

 
In conclusion, let us list the main results once 

more. 
1. Efficiency of correction for stationary thermal 

blooming is almost the same for all algorithms. 
2. The speed of control depends on the gradient 

step size (or on the length of the edge of the simplex). 
3. In the region of optimal parameters, all 

algorithms have approximately the same speed of control. 
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