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A problem of simulations of the turbulent-induced log-amplitude fluctuations 

is considered.  A method based on the Karhunen-Loeve functions allowing one to 

generate the samplings of log-amplitude fluctuations associated with weak-

turbulence conditions is described.  A  validity of the approach presented is 

illustrated by comparison of the theoretical statistical characteristics to those 

obtained from simulations. 
 

1. INTRODUCTION 

 

Methods of quasirandom simulations of the 
turbulent-induced distortions are often used in 
atmospheric and adaptive optics.1$8  These 
simulations allow one to solve a number of problems 
where it is difficult to apply an analytical treatment.  
The existing atmospheric applications are usually 
restricted to the generation of wavefront distortions.  
However, there are also some interesting problems 
dealing with an effect of log-amplitude fluctuations.  
Below we describe a generator of log-amplitude 
fluctuations operating on the basis of the Karhunen-
Loeve (K-L) functions which allows one to simulate 
the log-amplitude fluctuations with given correlation 
function. We assume through the paper that these 
fluctuations are isotropic and produced by weak 
turbulence on the vertical propagation path. 

 
2. KARHUNEN-LOEVE FUNCTIONS FOR 

LOG-AMPLITUDE FLUCTUATIONS 

 

The K-L approach is convenient for simulations, 
because a random process of interest can be represented 
as a linear superposition of orthogonal functions with 
statistically independent coefficients, so each coefficient 
can be generated randomly.  In order to construct a set 
of K-L functions L(ρ), we need to solve the 
homogeneous integral equation in which a kernel is 
given by the correlation function B(ρ1, ρ2) of a random 
process under consideration: 

 

⌡⌠

G

 

 
dρ1 B(ρ1, ρ2) L(ρ1) = λL(ρ2), (1) 

 

where G denotes the area in which the K-L functions 
have to be constructed. 

Our main concern here is to simulate the log-
amplitude fluctuations on the two-dimensional 
circular area, so the associated K-L functions have to 

be constructed at the same area.  A similar problem 
has been solved by Wang and Markey9 who calculated 
the K-L functions for the turbulent-induced wavefront 
distortions.  It has been shown that the two-
dimensional integral equation is reduced to the one-
dimensional equation if the random process of interest 
is assumed to be isotropic, i.e., 

 
B(ρ1, ρ2) = B(⏐ρ1 $ ρ2⏐). (2) 
 

Since the log-amplitude fluctuations also can be 
considered as isotropic, we apply the same approach 
(we omit some details referring the reader to the Wang 
and Markey’s paper).  If the condition (2) is appeared, 
the functions L can be represented as a product of 
radial and angular factors: 

 

L(ρ) K 

q
p(ρ) exp(iqϕ), (3) 

 

where ρ and ϕ are polar coordinates of vector ρ. 
The corresponding one-dimensional integral 

equations for the radial K-L functions K 

q
p are given by: 

 

⌡⌠

0

R

 

 
dρ1 ρ2 B

q(ρ1, ρ2) K 

q
p(ρ1) = λ2

pq K 

q
p(ρ2), (4) 

 
where R is the aperture radius, and the kernels 
Bq(ρ1, ρ2) are expressed in terms of the log-amplitude 
correlation function Bχ as 

 

Bq(ρ1, ρ2) = ⌡⌠

0

2π

 

 
dψ Bχ ( ρ2

1 + ρ2
2 $ 2 ρ1ρ2 cos ψ) cos (qψ).  

  (5) 
 

In what follows we assume that the log-amplitude 
fluctuations to be simulated are produced by the weak 
turbulence on the vertical propagation path.  Under 
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this condition, the log-amplitude correlation function 
Bχ can be written as10 

 

Bχ(x) = 2π2 k2 × 0.033 ⌡⌠

0

∞

 

 
dz C2

n(z) × 

 

× ⌡⌠

0

∞

 

 
dξ ξ$8/3 J0(ξx) ⎣

⎡
⎦
⎤

1 $ cos ⎝
⎛

⎠
⎞zξ2

k
 , (6) 

 

where C2
n(z) is the vertical profile of the refractive 

index structure characteristic, J0 is the Bessel function, 
and k is the wave number. 

In order to get the final results in closed form, we 

apply the Hufnagel model11 for C2
n(z).  In r0 

parametrization (r0 is the Fried parameter12), this 
profile can be expressed as: 
 

C2
n(z) = C0 r

$5/3
0  k$2
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  (7) 
 

where C0 = 1.027 ⋅ 10$3 m$1, z0 = 4.632 ⋅ 103 m, 

z1 = 103 m, and z2 = 1.5 ⋅ 103 m. 
In Eqs. (6) and (7), the altitude z and the Fried 

parameter r0 are given in meters, the wave number k is 
given in inverse meters, and the units of C2

n
 are meters 

to power $2/3. 
The inner integral in Eq. (6) is expressed in terms 

of generalized hypergeometric function, and after that 
the outer integral is easily evaluated by means of the 
Gauss-Laguerre quadrature.  The correlation function 
Bχ is plotted in Fig. 1 by the solid curve for r0=0.1 m. 

 

 
FIG. 1.  Theoretical (solid curve) and simulated 
(points) log-amplitude correlation functions for 
r0=0.1 m. 
 

As soon as the function Bχ is calculated, the 
integral equations (4) can be solved numerically after 
symmetrization of the kernels applying the following 
variables7: 

 

r1 = ρ2
1,   r2 = ρ2

2. 
 

3. RESULTS OF SIMULATIONS 

 

In previous Section, we have outlined the scheme 
of calculation of the K-L functions associated with log-
amplitude distortions.  Taking their superposition with 
random coefficients (the standards of generated 
coefficients have to be equal to the corresponding 
eigenvalues λpq), we obtain the samplings of interest.  
A number of samplings have been simulated and some 
statistical characteristics obtained making use of these 
samplings have been compared to the theoretical ones 
to check up the validity of simulations.  The results are 
presented below. 

Figure 1 shows the theoretical (solid lines) and 
experimental (points) log-amplitude correlation 
functions for the Fried parameter r0=0.1 m.  The 
experimental curves have been obtained applying an 
average over 104 samplings.  One can see that the 
theoretical and simulated functions are very close to 
one another. 

Let us discuss now some possible applications of 
the simulator presented.  One application may be an 
analysis of the role of amplitude fluctuations in 
adaptive optics (in other words, how great the errors of 
wavefront measurements dealing with the influence of 
these fluctuations are).  For instance, a pronounced 
influence may appear only if a scale of fluctuations is 
compatible with or greater than a zone of analysis.  
Such a situation takes place in modern adaptive systems 
with high-order wavefront correction where multi-zones 
schemes are used.  Another interesting result may be 
obtained considering an effect of amplitude fluctuations 
on the formation of a speckle pattern produced by the 
atmospheric turbulence. 
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