Vol. 27, issue 03, article # 4

Samoilova S. V. Retrieval of complex refractive index from lidar measurements: possibilities and limitations. // Optika Atmosfery i Okeana. 2014. V. 27. No. 03. P. 197–206 [in Russian].
Copy the reference to clipboard
Abstract:

Studies of indeterminacy of the complex refractive index m = mR + imi estimation and simulation results with respect to the analysis of the retrieval error of aerosol microphysical properties from multiwavelength lidar data (355 and 532 nm for extinction and 355, 532, and 1064 nm for backscatter) are presented. It is shown that m is not found unambiguously in the error-presence conditions, because a flat valley on (mR, mI) plane corresponds to a set of optical coefficients values. Accuracy of estimation of aerosol microphysical properties for bimodal size distribution function U(r) depends on the value of the contribution of small particles into the volume concentration. Mean errors are ΔmR ~ 3.5%, ΔmI ~ 80% for joint reconstruction of m and U(r) and 10% input noise. Lidar ratio information allows the error of reconstructing the single-scattering albedo to be at least halved.

Keywords:

aerosol, lidar, particle size distribution, complex refractive index

References:

1. Holben B.N., Eck T.F., Slutsker I., Tanré D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – A federated instrument network and data archive for aerosol characterization // Remote Sens. Environ. 1998. V. 66, N 1. P. 1–16.
2. Dubovik O.V., Lapyonok T.V., Oshchepkov S.L. Improved technique for data inversion: Optical sizing of multicomponent aerosols // Appl. Opt. 1995. V. 34, N 36. P. 8422–8436.
3. Dubovik O., King M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements // J. Geophys. Res. D. 2000. V. 105, N 16. P. 20673–20696.
4. Dubovik O., Holben B., Eck T.F., Smirnov A., Kaufman Y.J., King M.D., Tanre D., Slutsker I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations // J. Atmos. Sci. 2002. V. 59, N 3. P. 590–608.
5. Cattrall C., Reagan J., Thome K., Dubovik O. Variability of aerosol and spectral lidar and backscatter and extinction ratios of keys aerosol types derived from selected Aerosol Robotic Network locations // J. Geophys. Res. 2005. V. 110, N D10S11. DOI: 10.1029/ 2004JD005124.
6. Omar A.H., Winker D.M., Vaughan M.A., Hu Y., Trep-te Ch.H., Ferrare R.A., Lee K.-P., Hostetler Ch.A., Kit-taka Ch., Rogers R.R., Kuehn R.E., Lie Zh. The CALIPSO automated aerosol classification and lidar ratio selection algorithm // J. Atmos. Ocean. Technol. 2009. V. 26, N 10. P. 1994–2014.
7. Zuev V.E., Naac I.Je. Obratnye zadachi lazernogo zondirovanija. Novosibirsk: Nauka, 1982. 240 p.
8. Müller D., Wandinger U., Ansmann A. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory // Appl. Opt. 1999. V. 38, N 12. P. 2346–2357.
9. GAW Report N 178, www.wmo.int
10. Pappalardo G., Amodeo A., Pandolfi M., Wandinger U., Ansmann A., Bösenberg J., Matthias V., Amiridis V., De Tomasi F., Frioud M., Iarlori M., Komguem L., Papayannis A., Rocadenbosch F., Wang X. Aerosol lidar intercomparison in the framework of the EARLINET project: 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio // Appl. Opt. 2004. V. 43, N 28. P. 5370–5385.
11. Samojlova S.V., Balin Ju.S., Kohanenko G.P., Penner I.Je. Issledovanie vertikal'nogo raspredelenija troposfernyh ajerozol'nyh sloev po dannym mnogochastotnogo lazernogo zondirovanija. Pt. 1. Metody vosstanovlenija opticheskih parametrov // Optika atmosf. i okeana. 2009. V. 22, N 4. P. 344–357.
12. Böckmann C., Wandinger U., Ansmann A., Bösenberg J., Amiridis V., Boselli A., Delaval A., De Tomasi F., Frioud M., Videnov-Grigorov I., Hågård A., Horvat M., Iarlori M., Komguem L., Kreipl S., Larcheveque G., Matthias V., Papayannis A., Pappalardo G., Rocadenbosch F., Rodrigues J.A., Schneider J., Shcherbakov V., Wiegner M. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms // Appl. Opt. 2004. V. 43, N 4. P. 977–989.
13. Müller D., Wandinger U., Ansmann A. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Simulation // Appl. Opt. 1999. V. 38, N 12. P. 2358–2368.
14. Böckmann C. Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distribution // Appl. Opt. 2001. V. 40, N 9. P. 1329–1342.
15. Veselovskii I., Kolgotin A., Griaznov V., Müller D., Wan-dinger U., Whiteman D.M. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding // Appl. Opt. 2002. V. 41, N 18. P. 3685–3699.
16. Veselovskii I., Kolgotin A., Griaznov V., Müller D., Franke K., Whiteman D.M. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution // Appl. Opt. 2004. V. 43, N 5. P. 1180–1195.
17. Bohren F.C., Huffman D.R. Absorption and Scattering of Light by Small Particles. N.Y.: John Wiley & Sons, Inc., 1983. 530 p.
18. Kolgotin A., Müller D. Theory of inversion with two-dimensional regularization: profiles of microphysical particle properties derived from multiwavelength lidar measurements // Appl. Opt. 2008. V. 47, N 25. P. 4472–4490.
19. Veselovskii I., Dubovik O., Kolgotin A., Lapyonok T., Di Girolamo P., Summa D., Whiteman D.N., Mishchen-ko M., Tanré D. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements // J. Geophys. Res. 2010. V. 115, N D21203. DOI: 10.1029/2010JD014139.
20. Böckmann C., Mironova I., Müller D., Schneidenbach L., Nessler R. Microphysical aerosol parameters from multiwavelength lidar // J. Opt. Soc. Amer. 2005. V. A22, N 3. P. 518–528.
21. Veselovskii I., Kolgotin A., Müller D., Whiteman D.M. Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis // Appl. Opt. 2005. V. 44, N 25. P. 5292–5303.
22. Veretennikov V.V. Sovmestnoe opredelenie mikrostruktury i pokazatelja prelomlenija po dannym solnechnoj fotometrii // Optika atmosf. i okeana. 2007. V. 20, N 3. P. 214–221.
23. Verhaege Ch., Shcherbakov V., Personne P. Limitations on retrieval of complex refractive index of spherical particles from scattering measurements // J. Quant. Spectrosc. and Radiat. Transfer. 2008. V. 109, N 14. P. 2338–2348.
24. Chemyakin E., Kolgotin A., Romanov A., Müller D. Automated, unsupervised inversion of multiwavelength Raman lidar data: Statistical analysis of microphysical parameters // Reviewed and revised papers presented at ILRC26. 2012. P. 265–268.
25. Rozenberg G.V. Vosstanovlenie mikrofizicheskih parametrov ajerozolja po dannym kompleksnyh opticheskih izmerenij // Fizika atmosf. i okeana. 1976. V. 12, N 11. P. 1159–1167.
26. Tihonov A.N., Arsenin V.Ja. Metody reshenija nekorrektnyh zadach. M.: Nauka, 1986. 285 p.
27. Turchin V.F., Kozlov V.P., Malkevich M.S. Ispol'zovanie metodov matematicheskoj statistiki dlja reshenija nekorrektnyh zadach // Uspehi fiz. nauk. 1970. V. 102, Issue 3. P. 345–386.