Vol. 28, issue 09, article # 1

Falits A. V. The wander and optical scintillation of focused Laguerre–Gaussian beams in turbulent atmosphere. // Optika Atmosfery i Okeana. 2015. V. 28. No. 09. P. 763-771. DOI: 10.15372/AOO20150901 [in Russian].
Copy the reference to clipboard
Abstract:

On the basis of numerical simulation of optical radiation in a turbulent medium the influence of the value of the topological charge of the optical field on the beam wander and the intensity fluctuations of focused Laguerre–Gaussian beams is investigated. The beams are considered with different values of the topological charge of the complex field and the same radius of the initial aperture. The beams have different diffraction divergence which provides spatial separation of the radiation on the receiving aperture, thereby reducing the influence of different communications channels to each other during the signal demultiplexing. It was found that the beam wandering does not depend on the value of the topological charge of the complex field, and the behavior of the intensity fluctuations is determined by the mean intensity profile, which depends on the strength of the optical turbulence.

Keywords:

Laguerre–Gaussian beam, turbulent atmosphere, beam wander, scintillation

References:

  1. Allen L., Beijersbergen M.W., Spreeuw R.J.C., Woerdman J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes // Phys. Rev. A. 1992. V. 45, N 11. P. 8185–8189.
  2. Gibson G., Courtial J., Padgett M.J., Vasnetsov M., Pas’ko V., Barnett S.M., Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum // Opt. Express. 2004. V. 12, N 22. P. 5448–5456.
  3. Yao A.M., Padgett M.J. Orbital angular momentum: origins, behavior and applications // Adv. Opt. Photonics. 2011. V. 3. P. 161–204.
  4. Willner A.E., Huang H., Yan Y., Ren Y., Ahmed N., Xie G., Bao C., Li L., Cao Y., Zhao Z., Wang J., Lavery M.P.J., Tur M., Ramachandran S., Molisch A.F., Ashrafi N., Ashrafi S. Optical communications using orbital angular momentum beams // Adv. Opt. Photonics. 2015. V. 7. P. 66–106.
  5. Wang J., Yang J.-Y., Fazal I.M., Ahmed N., Yan Y., Huang H., Ren Y., Yue Y., Dolinar S., Tur M., Willner A.E. Terabit free-space data transmission employing orbital angular momentum multiplexing // Nature Photonics. 2012. V. 6. P. 488–496.
  6. Yan Y., Xie G., Lavery M.P.J., Huang H., Ahmed N., Bao C., Ren Y., Cao Y., Li L., Zhao Z., Molisch A.F., Tur M., Padgett M.J., Willner A.E. High-capacity millimetre-wave communications with orbital angular momentum multiplexing // Nature Commun. 2014. V. 5. Article number: 4876.
  7. Ren Y., Xie G., Huang H., Ahmed N., Yan Y., Li L., Bao C., Lavery M.P.J., Tur M., Neifeld M.A., Boyd R.W., Shapiro J.H., Willner A.E. Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link // Optica. 2014. V. 1, N 6. P. 376–382.
  8. Ren Y., Xie G., Huang H., Bao C., Yan Y., Ahmed N., Lavery M.P.J., Erkmen B.I., Dolinar S., Tur M., Neifeld M.A., Padgett M.J., Boyd R.W., Shapiro J.H., Willner A.E. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence // Opt. Lett. 2014. V. 39, N 10. P. 2845–2848.
  9. Rytov S.M., Kravcov Ju.A., Tatarskij V.I. Vvedenie v statisticheskuju radiofiziku. Pt. II. Sluchajnye polja. M.: Nauka, 1978. 463 p.
  10. Zuev V.E., Banah V.A., Pokasov V.V. Sovremennye problemy atmosfernoj optiki. V. 5. L.: Gidrometeoizdat, 1988. 270 p.
  11. Andrews L.S., Phillips R.L. Laser Beam Propagation through Random Media. Bellingham, Washington: SPIE Press, 2005. 782 p.
  12. Paterson C. Atmospheric Turbulence and Orbital Angular Momentum of Single Photons for Optical Communication // Phys. Rev. Lett. 2005. V. 94,  iss. 15. Article number: 153901.
  13. Gbur G., Tyson R.K. Vortex beam propagation through atmospheric turbulence and topological charge conservation // J. Opt. Soc. Amer. A. 2008. V. 25, N 1. P. 225–230.
  14. Eyyuboğlu H.T., Baykal Y., Ji X. Scintillations of Laguerre–Gaussian beams // Appl. Phys. B. 2010. V. 98. P. 857–863.
  15. Aksenov V.P., Pogutsa C.E. Increase in laser beam resistance to random inhomogeneities of atmospheric permittivity with an optical vortex included in the beam structure // Appl. Opt. 2012. V. 51, N 30. P. 7262–7267.
  16. Gu Y. Statistics of optical vortex wander on propagation through atmospheric turbulence // J. Opt. Soc. Amer. A. 2013. V. 30, N 4. P. 708–715.
  17. Yüceer M., Eyyuboğlu H.T. Laguerre–Gaussian beam scintillation on slant paths // Appl. Phys. B. 2012. V. 109, N 2. P. 311–316.
  18. Lukin I.P. Ustojchivost' kogerentnyh vihrevyh besselevyh puchkov pri rasprostranenii v turbulentnoj atmosfere // Optika atmosf. i okeana. 2014. V. 27, N 5. P. 367–374.
  19. Lukin I.P. Kol'cevaja dislokacija stepeni kogerentnosti vihrevogo besseleva puchka v turbulentnoj atmosfere // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 298–308.
  20. Cang J., Xiu P., Liu X. Propagation of Laguerre–Gaussian and Bessel–Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere // Opt. Laser Technol. 2013. V. 54. P. 35–41.
  21. Konjaev P.A., Lukin V.P., Sennikov V.A. O vlijanii fluktuacij fazy na rasprostranenie vihrevyh puchkov // Optika atmosf. i okeana. 2006. V. 19, N 12. P. 1029–1032. 
  22. Aksenov V.P., Izmajlov I.V., Kanev F.Ju., Pojzner B.N. Vlijanie na rabotu detektora opticheskogo vihrja fazovyh iskazhenij, vnosimyh jekranom, raspolozhennym vblizi izluchajushhej apertury opticheskoj sistemy svjazi // Optika atmosf. i okeana. 2010. V. 23, N 12. P. 1132–1136. 
  23. Lukin V.P., Konyaev P.A., Sennikov V.A. Beam spreading of vortex beams propagating in turbulent atmosphere // Appl. Opt. 2012. V. 51, N 10. P. C84–C87.
  24. Aksenov V.P., Kolosov V.V., Pogutsa C.E. The influence of the vortex phase on the random wandering of a Laguerre–Gaussian beam propagating in a turbulent atmosphere: a numerical experiment // J. Opt. 2013. V. 15, N 4. Article number: 044007.
  25. Aksenov V.P., Kolosov V.V., Pogutsa C.E. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence // Appl. Opt. 2014. V. 53, N 17. Р. 3607–3614.
  26. Eyyuboğlu H.T. Scintillation analysis of hypergeometric Gaussian beam via phase screen method // Opt. Commun. 2013. V. 309. P. 103–107.
  27. Berman G.P., Gorshkov V.N., Torous S.V. Scintillation reduction for laser beams propagating through turbulent atmosphere // J. Phys. B. 2011. V. 44. Article number: 055402.
  28. Liu X., Pu J. Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence // Opt. Express. 2011. V. 19, N 27. P. 26444–26450.
  29. Xiao Q., Liu G., Zhang R. Influence of phase distortion on the propagation of vortex beams // Appl. Opt. 2015. V. 54, N 12. P. 3523–3529.
  30. Aksenov V.P., Kolosov V.V. Scintillations of optical vortex in randomly inhomogeneous medium // Photon. Res. 2015. V. 3, N 2. P. 44–47.
  31. Banah V.A., Falic A.V. Ushirenie lagerrova puchka v turbulentnoj atmosfere // Optika i spektrosk. 2014. V. 117, N 6. P. 969–975.
  32. Banah V.A., Falic A.V. Chislennoe modelirovanie rasprostranenija lazernyh puchkov, formiruemyh mnogojelementnymi aperturami, v turbulentnoj atmosfere pri teplovom samovozdejstvii // Optika atmosf. i okeana. 2013. V. 26, N 5. P. 371–380.