Vol. 29, issue 01, article # 2

Banakh V. A., Sukharev A. A. Distortions of laser beams caused by a shock wave near the turret of a supersonic aircraft. // Optika Atmosfery i Okeana. 2016. V. 29. No. 01. P. 14-22. DOI: 10.15372/AOO20160102 [in Russian].
Copy the reference to clipboard
Abstract:

Results of calculation of the mean intensity of an optical beam crossing a shock wave arising at the supersonic flowing the turret at the beginning of a path in a homogeneous medium are present. It is shown that the spatial inhomogeneity of the refractive index of air in the area occupied by a shock wave can cause strong anisotropic distortions of a beam intersecting a shock wave. The distortions leads to focusing and fragmentation of a beam at relatively small distances from the turret and its quick degradation during further propagation.

Keywords:

turret, shock wave, mean intensity, focusing of optical radiation

References:

  1. Frumker E., Pade O. Generic method for aero-optic evaluations // Appl. Opt. 2004. V. 43, N 16. P. 3224–3228.
  2. Pade O. Propagation through shear layers // Proc. SPIE. 2006. V. 6364. P. 63640E.
  3. Volkov K.N., Emel'janov V.N. Ajeroopticheskie jeffekty v turbulentnom potoke i ih modelirovanie // Zh. tehn. fiz. 2008. V. 78, issue 2. P. 77–82.
  4. Henriksson M., Sjöqvist L., Parmhed O., Fureby C. Numerical laser beam propagation using large eddy simulation of a jet engine flow field // Opt. Eng. V. 54, iss. 8. 085101 (Aug 05, 2015). DOI: 10.1117/ 1.OE.54.8. 085101.
  5. Bo L., Hong L. Aero-Optical Characteristics of Supersonic Flow over Blunt Wedge with Cavity Window // J. Shanghai Jiaotong Univ. 2011. V. 16(6). P. 742–749.
  6. Xu L., Cai Y. Influence of altitude on aero-optic imaging deviation // Appl. Opt. 2011. V. 50, N 18. P. 2949–2957.
  7. Wang M., Mani A., Gordeev S. Physics and Computation of Aero-Optics // Annu. Rev. Fluid Mech. 2012. V. 44. P. 299–321.
  8. Gao Q., Yi S.H., Jiang Z.F., He L., Zhao Y.X. Hierarchical structure of the optical path length of the supersonic turbulent boundary layer // Opt. Express. 2012. V. 20. P. 16494–16503.
  9. Banah V.A., Suharev A.A., Falic A.V. Difrakcija opticheskogo puchka na udarnoj volne, voznikajushhej vblizi sverhzvukovogo letatel'nogo apparata // Optika atmosf. i okeana. 2013. V. 26, N 11. P. 932–941.
  10. Banakh V.A., Sukharev A.A., Falits A.V. Optical beam distortions induced by a shock wave // Appl. Opt. 2015. V. 54, iss. 8. P. 2023–2031.
  11. Banah V.A., Suharev A.A., Falic A.V. Projavlenie ajeroopticheskih jeffektov v turbulentnoj atmosfere pri sverhzvukovom dvizhenii konusoobraznogo tela // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 679–688. Banakh V.A., Sukharev A.A., Falits A.V. Manifestation of Aero-Optical Effects in a Turbulent Atmosphere in Supersonic Motion of a Conical Body // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 24–33.
  12. Zuev V.E., Banah V.A., Pokasov V.V. Optika turbulentnoj atmosfery. Sovremennye problemy atmosfernoj optiki. V. 5. L.: Gidrometeoizdat, 1988. 270 p.
  13. Kandidov V.P. Metod Monte-Karlo v nelinejnoj statisticheskoj optike // Uspehi fiz. nauk. 1996. V. 166, N 12. P. 1309–1338.
  14. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevcov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 280 p.
  15. Wilcox D.C. Turbulence modeling for CFD. La Canada, California: DCW Industries, Inc., 2006. 522 p.
  16. Banah V.A., Marakasov D.A., Suharev A.A. Vosstanovlenie strukturnoj harakteristiki pokazatelja prelomlenija i srednej plotnosti vozduha v udarnoj volne, voznikajushhej pri sverhzvukovom obtekanii prepjatstvij, iz opticheskih izmerenij // Optika i spektroskopija. 2011. V. 111, N 6. P. 1032–1037.
  17. Wang K., Wang M. Aero-optics of subsonic turbulent boundary layers // J. Fluid Mech. 2012. V. 696. P. 122–151.
  18. Gao Q., Yi S.H., Jiang Z.F., He L., Wang Xi. Structure of the refractive index distribution of the supersonic turbulent boundary layer // Opt. Lasers Engin. 2013. V. 51, iss. 9. P. 1113–1119.