Vol. 29, issue 04, article # 11

Donchenko V. A., Zemlyanov Al. A., Zinoviev M. M., Panamarev N. S., Trifonova A. V., Kharenkov V. A. Peculiarities of lasing in solutions of Rhodamine 6G with nanoparticles free of plasmon resonance. // Optika Atmosfery i Okeana. 2016. V. 29. No. 04. P. 332–337. DOI: 10.15372/AOO20160411 [in Russian].
Copy the reference to clipboard
Abstract:

The threshold characteristics of lasing in a layer of colloidal solution of dye Rhodamine 6G with plasmon-resonance Au nanoparticles and non-plasmon-resonance Pt nanoparticles excited by a wavelength of 532 nm are experimentally investigated. The spectral dependence of the scattering and absorption cross sections of nanoparticles of gold and platinum are calculated within the Mie theory. It is established experimentally that the addition of nanoparticles to the active medium reduces the lasing thresholds by two orders of magnitude. It is shown that the lasing threshold value is 1.5–2 times lower when adding gold nanoparticles than when adding platinum nanoparticles of the same concentration.

Keywords:

active medium, nanoparticles, colloidal solutions, lasing, plasmon resonance

References:

  1. Lawandy N.M., Balachandran R.M. Random laser? // Nature. 1995. V. 373, N 6511. P. 204–208.
  2. Letohov V.S. Generacija sveta rasseivajushhej sredoj s otricatel'nym rezonansnym pogloshheniem // Zh. jeksperim. i teor. fiz. 1967. V. 53, issue 4. P. 1442–1452.
  3. Sha W.L., Liu C.-H., Alfano R.R. Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media // Opt. Lett. 1994. V. 19, N 23. P. 1922–1924.
  4. Cao H. Lasing in random laser // Waves Random Media. Topical Review. 2003. V. 13. R1–R39.
  5. Hlebcov N.G. Optika i biofotonika nanochastic s plazmonnym rezonansom // Kvant. jelektron. 2008. V. 38, N 6. P. 504–529.
  6. Karpov S.V., Slabko V.V. Opticheskie i fotofizicheskie svojstva fraktal'no-strukturirovannyh zolej metallov. Novosibirsk: Izd-vo SO RAN, 2003. 265 p.
  7. Sweatlock L.A., Maier S.A., Atwater H.A., Penninkhof J.J., Polman A. Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles // Phys. Rev. B. 2005. V. 71, N 235408. P. 1–7.
  8. Klimov V.V., Guzatov D.V. Opticheskie svojstva atoma v prisutstvii klastera iz dvuh nanosfer // Kvant. jelektron. 2007. V. 37, N 3. P. 209–230.
  9. Dice G.D., Mujumbar S., Elezzabia A.Y. Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser // Appl. Phys. Lett. 2005. V. 86, N 131105. P. 1–5.
  10. Noginov M.A., Zhu G., Bahaura M., Adegoke J., Small C., Ritzo B.A., Drachev V.P., Shalaev V.M. The effect of gain and absorption on surface plasmon in metal nanoparticles // Appl. Phys. B. 2007. V. 86, N 3. P. 455–460.
  11. Zhdanov A.A., Kreuzer M.P., Rao S. Detection of Plasmon – enhanced luminescence fields from an optically manipulated pair of partially metal covered dielectric spheres // Opt. Lett. 2008. V. 33, N 23. P. 43–52.
  12. Meng X., Fujika K., Zong Y., Murai S., Tanaka K. Random lasers with coherent feedback from hightly transparent polimer films embedded with silver nanopartcles // Appl. Phys. Lett. 2008. V. 92, N 20112. P. 1–4
  13. Svetlichnyi V.A., Lapin I.N. Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol // Rus. Phys. J. 2013. V. 56, N 5. P. 581–587.
  14. Svetlichnyi V.A., Lapin I.N. Optimization of the process of nanoparticle fabrication by laser ablation of bulk targets in a liquid // Rus. Phys. J. 2015. V. 57, N 12. P. 1789–1792. 
  15. Kazakevich V.S., Kazakevich P.V., Jares'ko P.S., Saraeva I.N. Dinamika izmenenija spektra pogloshhenija kolloidnyh rastvorov nanochastic zolota v rezul'tate lazernoj fragmentacii v jetilovom spirte i vode // Izv. Samarskogo nauch. centra RAN. 2012. V. 14, N 4. P. 70–73.
  16. Ershov B.G. Nanochasticy metallov v vodnyh rastvorah: jelektronnye, opticheskie i kataliticheskie svojstva // Ros. him. zh. 2001. V. 45, N 3. P. 20–30.
  17. Born M., Vol'f Je. Osnovy optiki. M.: Nauka, 1970. 856 p.
  18. Panamarev N.S., Donchenko V.A., Samohvalov I.V., Panamaryova A.N. Scattering properties of spherically aggregated metal nanoparticles in active matrix // Proc. SPIE 9292, 20th Int. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics”. P. 92921Z-1–92921Z-4.
  19. Kolwas K., Derkachova A., Shopa M. Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles // J. Quant. Spectrosc. Radiat. Transfer. 2009. V. 110, N 14–16. P. 1490–1501
  20. Zemskij V.I., Kolesnikov Ju.L., Meshkovskij I.K. Fizika i tehnika impul'snyh lazerov na krasiteljah. SPb.: SpbGU ITMO, 2005. 176 p.
  21.