Vol. 29, issue 08, article # 4

Loginov S. V., Moraru E. I., Kharyutkina E. V. The relationship of tropospheric circulation cells with variability of meridional heat fluxes over the territory of Siberia. // Optika Atmosfery i Okeana. 2016. V. 29. No. 08. P. 640–646. DOI: 10.15372/AOO20160804 [in Russian].
Copy the reference to clipboard
Abstract:

In this study, the research of spatiotemporal changes of meridional circulation cells over the Siberian sector in the Northern hemisphere was carried out using reanalysis data over two time intervals: the period of intensive global warming 1976–1998 and the period of its slowdown 1999–2014. It was revealed that the most significant changes are observed in winter season in the beginning of XXI century: almost complete disappearance of the polar cell and intensification of Hadley and Ferrell cells was revealed. Tendencies in the changes of advective and eddy meridional heat fluxes and their relationship with stream function were also obtained and analyzed. Thus, there is the intensification of eddy circulation and the increase of the number of its centers in all months over the period of global warming weakening. It leads to meridional circulation development, strengthening of blocking processes, and, therefore, to the decrease of meridional heat fluxes in the Siberian sector in the beginning of XXI century.

Keywords:

circulation cells, meridional circulation, heat fluxes, Siberian sector

References:

  1. Hajrullina G.R., Astaf'eva N.M. Jelementy obshhej cirkuljacii i raspredelenie vlagozapasa atmosfery Zemli. Prepr. // IKI RAN (Moskva). 2008. № 2144. 72 p.
  2. Döös K., Nilsson J. Analysis of the meridional energy transport by atmospheric overturning circulations // J.  Atmos. Sci. 2011. V. 68. P. 1806–1819.
  3. Grotjahn R. Global atmospheric circulations: observation and theories. New York: Oxford University Press, 1993. 430 p.
  4. Chang E.K.M. Mean meridional circulation driven by eddy forcing of different timescale // J. Atmos. Sci. 1996. V. 53, N 1. P. 113–125.
  5. Wang C. Atlantic climate variability and its associated atmospheric circulation cells // J. Climate. 2002. V. 15, N 13. P. 1516–1536.
  6. Huang Fei Zhou, Faxiu England, Matthew H. Atmospheric circulation associated with anomalous variations in North Pacific wintertime blocking // Mon. Weather Rev. 2004. V. 132, N 5. P. 1049–1064.
  7. Holton J.R. An introduction to dynamic meteorology. 4th ed.  International geophysics series. San Diego: Academic Press, 2004. V. 88. 535 p.
  8. Johanson C.M., Fu Q. Hadley cell widening: Model simulations versus observations // J. Climate. 2009. V. 22, N 10. P. 2713–2725.
  9. Schwendike J., Berry G.J., Reeder M.J., Jakob C., Govekar P., Wardle R. Trends in the local Hadley and local Walker circulations // J. Geophys. Res. A. 2015. V. 120, N 15. P. 7599–7618.
  10. Dima I.M., Wallace J.M. On the seasonatity of the Hadley cell // J. Atmos. Sci. 2003. V. 60, N 12. P. 1522–1527.
  11. Kim Y.-H., Kim M.-K., Lau W.K.M., Kim K.-M., Cho C.-H. Possible mechanism of abrupt jump in winter surface air temperature in the late 1980s over the Northern Hemisphere // J. Geophys. Res. A. 2015. V. 120, N 24. P. 12474–12485.
  12. Huang J., McElroy M.B. Contributions of the Hadley and Ferrel circulations to the energetics of the atmosphere over the past 32 years // J. Climate. 2014. V. 27, N 7. P. 2656–2666.
  13. Holopainen E.O. On the role of mean meridional circulations in the energy balance of the atmosphere // Tellus. 1965. V. 17, N 3. P. 285–294.
  14. Yamada R., Pauluis O. Annular mode variability of the atmospheric meridional energy transport and circulation // J. Atmos. Sci. 2015. V. 72, N 3. P. 2070–2089.
  15. Wang L., Wang Z., Li J., Zheng F. The impact of extratropics-arctic-seesaw of perturbation potential energy on surface air temperature in boreal winters // Atmos. Sci. Lett. 2015. V. 16, N 4. P. 425–431.
  16. Haigh J.D., Blackburn M., Day R. The response of tropospheric circulation to perturbations in lower-stratospheric temperature // J. Climate. 2004. V. 18, N 17. P. 3672–3685
  17. Ippolitov I.I., Kabanov M.V., Loginov S.V., Podnebesnyh N.V., Harjutkina E.V. Izmenchivost' temperaturnogo rezhima na aziatskoj territorii Rossii v period global'nogo poteplenija // Optika atmosf. i okeana. 2012. V. 25, N 2. P. 122–131.
  18. Stachnik J.P., Schumacher C. A comparison of the Hadley circulation in modern reanalyses // J. Geophys. Res. A. 2011.  V. 116.  D22102.  DOI: 10.1029/2011JD016677.
  19. Kobayashi S., Ota Y., Harada Y., Ebita A., Moriya M., Onoda H., Onogi K., Kamahori H., Kobayashi C., Endo H., Miyaoka K., Takahashi K. The JRA-55 reanalysis: General specifications and basic characteristics // J. Meteorol. Soc. Jap. Ser. II. 2015. V. 93, N 1. P. 5–48.
  20. Trenberth K.E., Fasullo J.T. An apparent hiatus in global warming? // Earth’s future. 2013. N 1. P. 19–32.
  21. Blackmon M.L., Lee Y-H., Wallace J.M. Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales // J. Atmos. Sci. 1984. V. 41, N 6. P. 961–980.
  22. von Storch H., Zwiers F.W. Statistical analysis in climate research. Cambridge: Cambridge University Press, 2003. P. 484.