Vol. 29, issue 12, article # 5

Korshunov V. A., Zubachev D. S. Lidar measurements of stratospheric aerosol parameters over Obninsk in 2012–2015. // Optika Atmosfery i Okeana. 2016. V. 29. No. 12. P. 1034–1042. DOI: 10.15372/AOO20161205 [in Russian].
Copy the reference to clipboard
Abstract:

Lidar polarization measurements of stratospheric (10–40 km) aerosol parameters were fulfilled over Obninsk in 2012–2015. Over 300 altitude profiles of the aerosol backscattering coefficient at 532 nm wavelength were obtained. Parameters of aerosol backscattering measured are generally close to known background values. An increased content of spherical aerosol near tropopause was revealed in spring 2013; it was probably caused by sedimentation of Chelyabinsk meteorite aerosol. Layers of increased aerosol backscattering were observed at 10–15 km levels in July 2014 and July 2015, appeared as a result of transcontinental aerosol transfer from Canadian forest fires. Estimates of integral parameters of backscattering and extinction were made for the lower (from tropopause level to 15 km) and middle (from 15 to 30 km) aerosol layers. It is shown that the contributions of the lower layer in the above optical parameters are 1.8 and 1.6 times higher than those of the middle layer.

Keywords:

stratosphere, lidar, aerosol, backscattering, optical depth, Chelyabinsk meteorite

References:

    1.    Bazhenov O., Burlakov V., Dolgii S., Nevzorov A., Salnikova N. Optical monitoring of characteristics of the stratospheric aerosol layer and total ozone content at the Siberian Lidar Station (Tomsk: 56°30¢N; 85°E) // Int. J. Remote Sens. 2015. V. 36, N 11. P. 3024–3032. DOI: 10.1080/01431161.2015.1054964.
   2. Trickl T., Giehl H., Jäger H., Vogelmann H. 35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: From Fuego to Eyjafjallajökull, and beyond // Atmos. Chem. Phys. 2013. V. 13, iss. 10. P. 5205–5225.
   3. Hmelevcov S.S., Kaufman Ju.G., Korshunov V.A., Svetogorov E.D., Hmelevcov A.S. Lazernoe zondirovanie atmosfernyh parametrov na Obninskoj lidarnoj stancii NPO «Tajfun» // Voprosy fiziki atmosfery: Sb. statej. SPb.: Gidrometeoizdat, 1998. P. 358–392.
   4. Korshunov V.A., Zubachev D.S., Merzljakov E.G., Jacobi Ch. Rezul'taty opredelenija ajerozol'nyh harakteristik srednej atmosfery metodom dvuhvolnovogo lidarnogo zondirovanija i ih sopostavlenie s izmerenijami meteornogo radiojeho // Optika atmosf. i okeana. 2014. V. 27, N 10. P. 862–868; Kоrshunоv V.А., Zubаchev D.S., МеrzlyakоЕ.G., Jacobi Ch. Aerosol parameters of middle atmosphere by two-wavelength lidar sensing and their comparison with radio meteor echo measurements // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 82–88.
   5. Korshunov V.A., Zubachev D.S. Ob opredelenii parametrov stratosfernogo ajerozolja po dannym dvuhvolnovogo lidarnogo zondirovanija // Izv. RAN. Fiz. atmosf. i okeana. 2013. V. 49, N 2. P. 196–207.
   6. Voigt S., Orphal J., Bogumil K., Burrows J.P. The temperature dependence (203–293) K of the absorption cross sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy // J. Photochem. Photobiol. A. Chem. 2001. V. 143, iss. 1. P. 1–9.
   7. Molina L.T., Molina M.J. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range // J. Geophys. Res. D. 1986. V. 91, iss. 13. P. 14501–14508.
   8. Burrows J.P., Richter A., Dehn A., Deters B., Himmelmann S., Voigt S., Orphal J. Atmospheric remote-sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231–794 nm range // J. Quant. Spectrosc. Radiat. Transfer. 1999. V. 61. iss. 4. P. 509–517.
   9. Databases 03Spectra. URL: http://www.iup.uni-bremen.de/gruppen/molspec/databases/referencespectra/o3spectra/index.html
10. Zuev V.V. Lidarnyj kontrol' stratosfery. Novosibirsk: Nauka, 2004. 306 p.
11. Ivanov V.N., Zubachev D.S., Korshunov V.A., Lapshin V.B., Ivanov M.S., Galkin K.A., Gubko P.A,, Antonov D.L., Tulinov G.F., Cheremisin A.A., Novikov P.V., Nikolashkin S.V., Titov S.V., Marichev V.N. Lidarnye nabljudenija stratosfernyh ajerozol'nyh sledov ot Cheljabinskogo meteorita // Optika atmosf. i okeana. 2014. V. 27, N 2. P. 117–122.
12. Birner T., Dörnbrack A., Schumann U. How sharp is the tropopause at midlatitudes? // Geophys. Res. Lett. 2002. V. 29, N 14. P. 1700. DOI: 10.1029/2002GL015142.
13. Birne T., Sankey D., Shepherd T.G. The tropopause inversion layer in models and analyses // Geophys. Res. Lett. 2006. V. 33. P. L14804. DOI: 10.1029/2006GL026549.
14. Deshler T., Anderson-Sprecher R., Jäger H., Barnes J., Hofmann D.J., Clemesha B., Simonich D., Osborn M., Grainger R.G., Godin-Beekmann S. Trends in the nonvolcanic component of stratospheric aerosol over the period 1971–2004 // J. Geophys. Res. 2006. V. 111. P. D01201. DOI: 10.1029/2005JD006089.
15. Bazhenov O.E., Burlakov V.D., Dolgii S.I., Nevzorov A.V. Lidar observations of aerosol disturbances of the stratosphere over Tomsk (56.5°N; 85.0°E) in volcanic activity period 2006–2011 // Int. J. Opt. 2012. V. 2012. Article ID 786295. DOI: 10.1155/2012/786295.
16. NASA. Global Sulfur Dioxide Monitoring. URL: http://so2.gsfc.nasa.gov/measures.html
17. Smithsonian Institution. Global volcanism program. URL: http://volcano.si.edu
18. From M., Torres O., Diner D., Lindsey D., Vant Hull B., Servranckx R., Shettle E.P., Li Z. Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 1. Earth-viewing satellite perspective // J. Geophys. Res. 2008. V. 113. P. D08202. DOI: 10.1029/2007JD009153.
19. Fromm M., Shettle E., Fricke K.H., Ritter C., Trickl T.,  Giehl H.,  Gerding M., Barnes J.E., O'Neill M., Massie S.T., Blum U., McDermid I.S., Leblanc T., Deshler T. Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 2. Vertical profile perspective // J. Geophys. Res. 2008. V. 113. P. D08203. DOI: 10.1029/2007JD009147.
20. Ridley D.A., Solomon S., Barnes J.E., Burlakov V.D., Deshler T., Dolgii S.I., Herber A.B., Nagai T., Neely III R.R., Nevzorov A.V., Ritter C., Sakai T., Santer B.D., Sato M., Schmidt A., Uchino O., Vernier J.P. Total volcanic stratospheric aerosol optical depths and implications for global climate change // Geophys. Res. Lett. 2014. V. 41, N 22. Р. 7763–7769. DOI: 10.1002/2014GL061541.
21. Goldfarb L., Keckhut P., Chanin M.-L., Hauchecorne A. Cirrus Climatological Results from Lidar Measurements at OHP (44°N, 6°E) // Geophys. Res. Lett. 2001. V. 28, iss. 9. P. 1687–1690.
22. Immler F., Schrems O. LIDAR measurements of cirrus clouds in the northern and southern midlatitudes during INCA (55°N, 53°S): A comparative study // Geophys. Res. Lett. 2002. V. 29, N 16. P. 1809. DOI: 10.1029/2002GL015077.
23. Sassen K., Campbell J.R. A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part I: Macrophysical and synoptic properties // Atm. Sci. 2001. V. 58, N 5. P. 481–496.
24. Volkovickij O.A., Pavlova L.N., Petrushin A.G. Opticheskie svojstva kristallicheskih oblakov. L.: Gidrometeoizdat, 1984. 198 p.
25. Jäger H., Deshler T. Correction to ‘‘Lidar backscatter to extinction, mass and area conversions for stratospheric aerosols based on midlatitude balloonborne size distribution measurements’’ // Geophys. Res. Lett. 2003. V. 30, N 7. P. 1382. DOI: 10.1029/2003GL017189.
26. Air Resources Laboratory. Transport & Dispersion Modeling. HYSPLIT. URL: http://ready.arl.noaa.gov/HYSPLIT_traj.php
27. CIMSS. PyroCb. URL: http://pyrocb.ssec.wisc.edu/archives/370
28. CIMSS. PyroCb. URL: http://pyrocb.ssec.wisc.edu/archives/992#respond