Vol. 31, issue 04, article # 4

Shamanaev V. S. Sea fish school detection by the method of polarization laser sensing. // Optika Atmosfery i Okeana. 2018. V. 31. No. 04. P. 268–274. DOI: 10.15372/AOO20180404 [in Russian].
Copy the reference to clipboard
Abstract:

Main regularities of the formation of lidar returns in sensing of water depth comprising pelagic fish schools are determined by the Monte Carlo method. Based on the analysis of the results of statistical simulation of depth profiles of lidar signal power and depolarization, a method of polarization laser sensing for sea fish school detection is suggested using the depth profiles of lidar return signal power and depolarization and the natural threshold – the sea water extinction coefficient measured with the lidar.

Keywords:

airborne lidar, polarization, ocean optics, bioproductivity, remote sensing

References:

    1.    Judovich Ju.B., Baral A.A. Promyslovaja razvedka ryby. M.: Pishhevaja promyshlennost', 1968. 303 p.
   2. Murphree D.L., Taylor C.D., McClendon R.V. Mathematical modeling for the detection of fish by an airborne laser // AIAA J. 1974. V. 12, iss. 12. P. 1686–1692.
   3. Fredriksson K., Galle B., Nystrom K., Svanberg S., Ostrom B. Underwater laser-radar experiments for bathymetry and fish-school detection. Chalmers Univ. of Tech., Goteborg Inst. of Physics Rep. GIPR-162, 1978. 28 p.
   4. Churnside J.M., Demer D.A., Mohmoudi D. A comparison of lidar and echosounder measurements of fish schools in the Gulf of Mexico // ICES J. Mar. Sci. 2003. V. 60. P. 147–154. DOI: 10.1006/jmsc2003.1327.
   5. Churnside J.M., Wilson J.J. Airborne imaging of sulmon // Appl. Opt. 2004. V. 43, iss. 6. P. 1416–1424.
   6. Churnside J.M., Wilson J.J., Tatarskii V.V. Lidar profiles of fish schools // Appl. Opt. 1997. V. 36, iss. 24. P. 6011–6020.
   7. Petzold T.J. Volume scattering functions for selected ocean waters // Scripps Institution of Oceanolography. Visibility laboratory. 1972. 79 p.
   8. Kopilevich Ju.I., Kononenko M.E., Zadorozhnaja E.I. Vlijanie indikatrisy rassejanija vpered na harakteristiki svetovogo puchka v morskoj vode // Opticheskij zhurnal. 2010. V. 77, N 10. P. 10–14.
   9. Krekova M.M., Krekov G.M., Samokhvalov I.V., Shamanaev V.S. Numerical evaluation of the possibilities of remote laser sensing of fish schools // Appl. Opt. 1994. V. 33, iss. 24. P. 5715–5720.
10. Shamanaev V.S., Krekova M.M., Penner I.E. The effect of optical characteristics of water on lidar bathimetry // Abstr. Papers “Workshop on Lidar Remote Sensing of Land and Sea”, 6–8 May, 1991. Florence, Italy. P. 37.
11. Shamanaev V.S., Krekova M.M., Penner I.E. Polarization characteristics for lidar returns under the sea water // Abstr. Papers “Workshop on Lidar Remote Sensing of Land and Sea”, 6–8 May, 1991. Florence, Italy. P. 38.
12. Krekova M.M., Krekov G.M., Shamanaev V.S., Penner I.Je. Ocenki poljarizacionnyh harakteristik signala lidara ot morskoj vody, soderzhashhej stratificirovannye neodnorodnosti // Optika atmosf. i okeana. 1994. V. 7, N 1. P. 67–75.
13. Shamanaev V.S. Penner I.Je., Kohanenko G.P., Krekova M.M. Samoletnyj lidar dlja zondirovanija okeana // Nauka – proizvodstvu. 2003. N 9(65). P. 20–23.
14. A.s. 1119456 SU А1, MKI G 01 S 17/00. Sposob distancionnogo obnaruzhenija rybnyh kosjakov / Shamanaev V.S. Opubl. v BI. 1992. N 34.