Vol. 31, issue 04, article # 6

Аntokhin P. N., Gochakov A. V., Kolker A. B., Penenko A. V. Comparison of the calculation results of the chemical transport model WRF-CHEM with airborne measurements in Norilsk. // Optika Atmosfery i Okeana. 2018. V. 31. No. 04. P. 282–287. DOI: 10.15372/AOO20180406 [in Russian].
Copy the reference to clipboard
Abstract:

The verification of the results of WRF-CHEM model simulation of anthropogenic emission distributions over Norilsk industrial zone using airborne sounding data for August 2004 is carried out. The study showed that the selected configuration of the WRF-CHEM v3.5.1 model adequately reproduces the meteorological parameters measured during the campaign of 2004. The simulated distributions of the concentrations of sulphur dioxide and ozone and mass concentration of aerosol qualitatively reproduce the distributions obtained during the airborne sounding. Quantitative estimates show that the standard errors for sulphur dioxide, the mass concentration of aerosol PM2.5, and ozone calculated for three flights are 23 ppb, 2.6 μg/m3, and 9.8 ppb, respectively. Possible reasons for such discrepancies may be incorrect specification of the initial and boundary conditions, inaccurate values of anthropogenic emissions, and limitations to the aerosol and chemical mechanisms used.

Keywords:

airborne sounding, WRF-CHEM model, Norilsk, ozone, anthropogenic pollution

Figures:
References:

    1.    Obzor sostojanija i zagrjaznenija okruzhajushhej sredy v Rossijskoj Federacii za 2015 year. M.: Rosgidromet, 2016. 224 p.
   2. Pershina N.A., Polishhuk A.I., Svistov P.F. K voprosu o zakislenii atmosfernyh osadkov v rossijskoj Arktike // Tr. GGO im. A.I. Voejkova. 2008. N 558. P. 211–232.
   3. Vinogradova A.A., Maksimenkov L.O., Pogarskij F.A. Izmenenija atmosfernoj cirkuljacii i zagrjaznenija okruzhajushhej sredy v Sibiri ot promyshlennyh rajonov Noril'ska i Urala v nachale ХХI v. // Optika atmosf. i okeana. 2009. V. 22, N 6. P. 527–534.
   4. Kucenogij K.P., Smirnova A.I., Smoljakov B.S. Ocenka soderzhanija nekotoryh komponentov v vybrosah promyshlennyh predprijatij Juzhnogo Urala i Noril'ska // Optika atmosf. i okeana. 2002. V. 15, N 5–6. P. 460–463.
   5. Shlychkov V.A., Mal'bahov V.M., Lezhenin A.A. Chislennoe modelirovanie atmosfernoj cirkuljacii i perenosa zagrjaznjajushhih primesej v Noril'skoj doline // Optika atmosf. i okeana. 2005. V. 18. N 5–6. P. 490–496.
   6. Lezhenin A.A., Raputa V.F., Jaroslavceva T.V. Chislennyj analiz atmosfernoj cirkuljacii i rasprostranenija zagrjaznjajushhih primesej v okrestnostjah Noril'skogo promyshlennogo rajona // Optika atmosf. i okeana. 2016. V. 29, N 6. P. 467–471; Lеzhеnin А.А., Rаputа V.F., Yaroslavtsevа Т.V. Numerical analysis of atmospheric circulation and pollution transfer in the environs of Norilsk Industrial Region // Atmos. Ocean. Opt. 2016. V. 29, N 6. P. 565–569.
   7. Zuev D.V., Kashkin V.B. Analiz vybrosov dioksida sery po dannym instrumenta OMI (sputnik AURA) dlja Noril'skoj promyshlennoj zony. // Optika atmosf. i okeana. 2013. V. 26, N 9. P. 793–797.
   8. Korec M.A., Ryzhkova V.A., Danilova I.V. Ispol'zovanie GIS dlja ocenki sostojanija nazemnyh jekosistem Noril'skogo promyshlennogo rajona // Sib. jekol. zh. 2014. N 6. P. 887–902.
   9. Arshinov M.Ju., Belan B.D., Davydov D.K., Ivlev G.A., Pirogov V.A., Simonenkov D.V., Tolmachev G.N., Fofonov A.V. Kompleksnaja ocenka sostojanija vozdushnogo bassejna Noril'skogo promyshlennogo rajona. Part. 1. Razmery i dinamika kolonki primesej // Optika atmosf. i okeana. 2006. V. 19, N 5. P. 441–447.
10. Arshinov M.Ju., Belan B.D., Davydov D.K., Ivlev G.A., Pestunov D.A., Rasskazchikova T.M., Simonenkov D.V., Tolmachev G.N., Fofonov A.V. Kompleksnaja ocenka sostojanija vozdushnogo bassejna Noril'skogo promyshlennogo rajona. Pt. 2. Balans primesej v zone Noril'ska // Optika atmosf. i okeana. 2006. V. 19, N 7. P. 622–631.
11. Arshinov M.Ju., Belan B.D., Ivlev G.A., Krasnov O.A., Rasskazchikova T.M., Simonenkov D.V., Tolmachev G.N., Fofonov A.V. Kompleksnaja ocenka sostojanija vozdushnogo bassejna Noril'skogo promyshlennogo rajona. Pt. 3. Rasprostranenie primesej // Optika atmosf. i okeana. 2006. V. 19, N 9. P. 798–805.
12. Arshinova V.G., Belan B.D., Ivlev G.A., Rasskazchikova T.M., Simonenkov D.V., Tolmachev G.N., Fofonov A.V. Kompleksnaja ocenka sostojanija vozdushnogo bassejna Noril'skogo promyshlennogo rajona. Pt. 4. Vertikal'naja stratifikacija primesej // Optika atmosf. i okeana. 2006. V. 19, N 10. P. 905–908.
13. Belan B.D., Zadde G.O., Ivlev G.A., Krasnov O.A., Pirogov V.A., Simonenkov D.V., Tolmachev G.N., Fofonov A.V. Kompleksnaja ocenka sostojanija vozdushnogo bassejna Noril'skogo promyshlennogo rajona. Pt. 5. Primesi v prizemnom sloe vozduha. Sootvetstvie sostava vozduha gigienicheskim normativam. Rekomendacii // Optika atmosf. i okeana. 2007. V. 20, N 2. P. 132–142.
14. Grell G.A., Peckham S.E., Schmitz R., McKeen S.A., Frost G., Skamarock W.C., Eder B. Fully coupled “online” chemistry in the WRF model // Atmos. Environ. 2005. V. 39, iss. 37. P. 6957–6976.
15. Kuik F., Lauer A., Churkina G., Denier van der Gon H.A.C., Fenner D., Mar K.A., Butler T.M. Air quality modelling in the Berlin–Brandenburg region using WRF-Chem v3.7.1: Sensitivity to resolution of model grid and input data // Geosci. Model Dev. 2016. V. 9, iss. 12. P. 4339–4363. https://doi.org/10.5194/gmd-9-4339-2016.
16. Mar K.A. Ojha N., Pozzer A., Butler T.M. Ozone air quality simulations with WRF-Chem (v3.5.1) over Europe: Model evaluation and chemical mechanism comparison // Geosci. Model Dev. 2016. V. 9, iss. 10. P. 3699–3728. https://doi.org/10.5194/gmd-9-3699-2016.
17. Abou Rafee S.A., Martins L.D., Kawashima A.B., Almeida D.S., Morais M.V.B., Souza R.V.A., Oliveira M.B.L., Souza R.A.F., Medeiros A.S.S., Urbina V., Freitas E.D., Martin S.T., Martins J.A. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: A numerical study with the WRF-Chem model // Atmos. Chem. Phys. 2017. V. 17, iss. 12. P. 7977–7995. https://doi.org/10.5194/acp-17-7977-2017.
18. Marelle L., Raut J.-C., Thomas J.L., Law K.S., Quennehen B., Ancellet G., Pelon J., Schwarzenboeck A., Fast J.D. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008 // Atmos. Chem. Phys. 2015. V. 15, iss. 7. P. 3831–3850. https://doi.org/10.5194/acp-15-3831-2015.
19. Zhang Y., Zhang X., Zhang Q., He K., Wang L., Duan F. Application of WRF-CHEM over East Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ // Atmos. Environ. 2016. V. 124, part B. P. 285–300.
20. Zhang Y., Zhang X., Zhang Q., He K., Wang L., Duan F. Application of WRF-CHEM over East Asia: Part II. Model improvement and sensitivity simulations // Atmos. Environ. 2016. Т. 124, part B. Р. 301–320.
21. Hong S.-Y., Dudhia J., Chen S.-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation // Mon. Weather Rev. 2004. V. 132, N 1. P. 103–120.
22. Mlawer E.J. Taubman S.J., Brown P.D., Iacono M.J., Clough S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave // J. Geophys. Res.: Atmos. 1997. V. 102, N D14. P. 16663–16682.
23. Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model // J. Atmos. Sci. 1989. V. 46, N 20. P. 3077–3107.
24. Beljaars A.C. The parametrization of surface fluxes in large-scale models under free convection // Q. J. R. Meteorol. Soc. 1995. V. 121, N 522. P. 255–270.
25. Hong S.-Y., Noh Y., Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes // Mon. Weather. Rev. 2006. V. 134, N 9. P. 2318–2341.
26. Chen F., Dudhia J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 Modeling System. Part I: Model implementation and sensitivity // Mon. Weather. Rev. 2001. V. 129, N 4. P. 569–585.
27. Grell G.A., Dévényi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques // Geophys. Res. Lett. 2002. V. 29, N 14. P. 38.
28. Stockwell W.R., Kirchner F., Kuhn M., Seefeld S. A new mechanism for regional atmospheric chemistry modelling // J. Geophys. Res.: Atmos. 1997. V. 102, N D22. P. 25847–25879.
29. Chin M., Rood R.B., Lin S.-J., Müller J.-F., Thompson A.M. Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties // J. Geophys. Res.: Atmos. 2000. V. 105, N D20. P. 24671–24687.
30. Damian V., Sandu A., Damian M., Potra F., Carmichael G.R. The kinetic PreProcessor KPP – A software environment for solving chemical kinetics // Comput. Chem. Eng. 2002. V. 26, N 11. P. 1567–1579.
31. Peng G. What’s the difference between FNL and GFS. [Electronic resource] // NOAA/National Weather Service National Centers for Environmental Prediction, 2014. URL: http://rda.ucar.edu/datasets/ds083.2/docs/FNLvGFS.pdf (last access: 25.01.2017).
32. Saha S., Moorthi S., Wu X., Wang J., Nadiga S., Tripp P., Behringer D., Hou Y.-T., Chuang H.-Y., Iredell M., Ek M., Meng J., Yang R., Peña M., van den Dool H., Zhang Q., Wang W., Chen M., Becker E. The NCEP Climate Forecast System Version 2 [Electronic resource] // NOAA/ National Weather Service National Centers for Environmental Prediction, 2013. URL: http://cfs.ncep.noaa.gov/cfsv2.info/CFSv2_paper.pdf (last access: 25.01.2017).
33. Zuev V.E., Belan B.D., Kabanov D.M., Kovalevskij V.K., Luk'janov O.Ju., Meleshkin V.E., Mikushev M.K., Panchenko M.V., Penner I.Je., Pokrovskij E.V., Sakerin S.M., Terpugova S.A., Tolmachev G.N., Tumakov A.G., Shamanaev V.S., Shherbatov A.I. Samolet-laboratorija An-30 «Optik-Je» dlja jekologicheskih issledovanij. // Optika atmosf. i okeana. 1992. V. 5, N 10. P. 1012–1021.
34. Arshinov M.Ju., Belan B.D., Davydov D.K., Ivlev G.A., Kozlov A.S., Kozlov V.S., Panchenko M.V., Penner I.Je., Pestunov D.A., Safatov A.S., Simonenkov D.V., Tolmachev G.N., Fofonov A.V., Shamanaev V.S., Shmargunov V.P. Samolet-laboratorija An-30 «Optik-Je»: 20 let issledovanij okruzhajushhej sredy // Optika atmosf. i okeana. 2009. V. 22, N 10. P. 950–957.