Vol. 31, issue 09, article # 8

Chesnokova T. Yu., Firsov K. M., Razmolov A. A. Contribution of the water vapor continuum absorption to radiative balance of the atmosphere with cirrus clouds. // Optika Atmosfery i Okeana. 2018. V. 31. No. 09. P. 743–751. DOI: 10.15372/AOO20180908 [in Russian].
Copy the reference to clipboard
Abstract:

The upward and downward fluxes of solar and thermal radiation are simulated for the meteorological conditions typical for midlatitude summer. The atmospheric radiative balance due to cirrus cloudiness with different depth is assessed. The sensitivity of the radiative forcing to models of water vapor continual absorption is estimated.

Keywords:

atmospheric radiative transfer, water vapor continuum, cirrus clouds

References:

   1. Stephens G.L., L'Ecuyer T. The Earth's energy balance // Atmos. Res. 2015. V. 166. P. 195–203.
   2. Stephens G.L., Wild M., Stackhouse P.W., Ecuyer T.L., Kato S., Henderson D.S. The global character of the flux of downward longwave radiation // J. Clim. 2012. V. 25. P. 2329–2340. DOI: 10.1175/JCLI-D-11-00262.1.
   3. Turner D.D., Merrelli A., Vimont D., Mlawer E.J. Impact of modifying the longwave water vapor continuum absorption model on community Earth system model simulations // J. Geophys. Res. 2012. V. 117. P. D04106. DOI: 10.1029/2011JD016440.
   4. Ptashnik I.V. Kontinual'noe pogloshchenie vodyanogo para: kratkaya predystoriya i sovremennoe sostoyanie problemy // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 443–459.
   5. Firsov K.M., Chesnokova T.Yu., Bobrov E.V., Klitochenko I.I. Estimation of uncertainties in the longwave radiative fluxes simulation due to spectroscopic errors // Proc. SPIE. 2014. V. 9292. P. 929205. DOI: 10.1117/12.2075550.
   6. Chesnokova T.Yu., Klitochenko I.I., Firsov K.M. Vklad kontinual'nogo pogloshcheniya N2O v potoki dlinnovolnovogo izlucheniya oblachnoj i bezoblachnoj atmosfery // Optika atmosf. i okeana а. 2016. V. 29, N 10. P. 843–849.
   7. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.P., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. Р. D16305.
   8. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements // Phil. Trans. R. Soc. A. 2012. V. 370. P. 2557–2577.
   9. Baranov Yu.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm-1 spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 12–13. P. 2291–2302.
10. Baranov Yu.I., Lafferty W.J. The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm-1 atmospheric windows // Phil. Trans. R. Soc. A. 2012. V. 370. P. 2578–2589.
11. URL: http://rtweb.aer.com/continuum_frame.htm (last access: 09.03.2018).
12. Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.C. Development and recent evaluation of the MT_CKD model of continuum absorption // Phil. Trans. R. Soc. A. 2012. V. 370. P. 2520–2556.
13. Paynter D., Ramaswamy V. Variations in water vapor continuum radiative transfer with atmospheric conditions // J. Geophys. Res. 2012. V. 117. P. D16310. DOI: 10.1029/2012JD017504.
14. Firsov K.M., Chesnokova T.Yu., Razmolov A.A., Chentsov A.V. Vklad kontinual'nogo pogloshcheniya vodyanogo para v potoki korotkovolnovogo solnechnogo izlucheniya v atmosfere Zemli pri nalichii peristoj oblachnosti // Optika atmosf. i okeana. 2017. V. 30, N 10. P. 813–820; Firsov K.M., Chesnokova T.Yu., Razmolov А.А., Chentsov А.V. Contribution of the water vapor continuum absorption to shortwave solar fluxes in the Earth’s atmosphere with cirrus cloudiness // Atmos. Ocean. Opt. 2018. V. 31, N 1. P. 1–8.
15. Firsov K.M., Chesnokova T.Yu., Bobrov E.V. Rol' kontinual'nogo pogloshcheniya parov vody v dlinnovolnovyh radiatsionnyh protsessah prizemnogo sloya atmosfery v regione Nizhnego Povolzh'ya // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 665–672; Firsov K.M., Chesnokova T.Yu., Bobrov E.V. The role of the water vapor continuum absorption in near ground long-wave radiation processes of the lower Volga Region // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 1–8.
16. Chesnokova T.Yu., Firsov K.M., Voronina Yu.V. Primenenie ryadov eksponent pri modelirovanii shirokopolosnyh potokov solnechnogo izlucheniya v atmosfere Zemli // Optika atmosf. i okeana. 2007. V. 20, N 9. P. 799–804.
17. Tvorogov S.D., Zhuravleva T.B., Rodimova O.B., Firsov K.M. Theory of series of exponents and its application for analysis of radiation processes // Problems of Global Climatology and Ecodynamics: Anthropogenic Effects on the State of Planet Earth. UK: Springer/Praxis, Chichester, 2008. Ch. 9. P. 211–240.
18. Lacis A., Oinas V. A description of the k-distribution method for modeling non-grey gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres // J. Geophys. Res. D. 1991. V. 96, N 5. P. 9027.
19. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Benner D.C., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrink A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN 2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.
20. Stamnes K., Tsay S.-C., Wiscombe W., Jayaweera K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media // Appl. Opt. 1988. V. 27, iss. 12. P. 2502.
21. Slingo A.A. GCM parameterization for the shortwave radiative properties of water clouds // J. Atmos. Sci. 1989. V. 46, N 10. P. 1419–1427.
22. Fontenla J., White O.R., Fox P.A., Avrett E.H., Kurucz R.L. Calculation of solar irradiances. I. Synthesis of the solar spectrum // Astrophys. J. 1999. V. 518. P. 480–500.
23. URL: http://kurucz.harvard.edu/sun/irradiance2008/ (last access: 09.03.2018).
24. Anderson G.P., Clough S.A., Kneizys F.X., Chetwynd J.H., Shettle E.P. AFGL atmospheric constituent profiles (0–120 km) // AFGL-TR-86-0110, AFGL (OPI), Hanscom AFB, MA 01736. Environmental Research Paper. 1986. N 954. 25 p.
25. Kneizys F.X., Robertson D.S., Abreu L.W., Acharya P., Anderson G.P., Rothman L.S., Chetwynd J.H., Selby J.E.A., Shetle E.P., Gallery W.O., Berk A., Clough S.A., Bernstein L.S. The MODTRAN 2/3 report and LOWTRAN 7 model. Phillips Laboratory, Geophysics Directorate, Hanscom AFB, MA 01731-3010. 1996. P. 260.
26. Firsov K.M., Chesnokova T.Yu., Klitochenko I.I., Razmolov A.A. Comparison of two water vapor continuum models in simulation of the longwave fluxes taking into account absorption in cirrus clouds // Proc. SPIE. 2016. V. 10035. P. 100350I-1.
27. Mitsel A.A., Ptashnik I.V., Firsov K.M., Fomin A.B. Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere // Atmos. Ocean. Opt. 1995. V. 8, N 10. P. 847–850.
28. Fu Q. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models // J. Clim. 1996. V. 9. P. 2058–2082.
29. Harin A.S., Luzan P.I., Shatunova M.V., Dmitrieva-Arrago L.R. Metod rascheta komponent radiatsionnoj energetiki sistemy «Zemlya–atmosfera» v IK-oblasti spektra i rol' mikrofizicheskih svojstv oblakov // Tr. Gidromettsentra Rossii. 2010. P. 59–77.
30. Fu Q., Yang P., Sun W. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models // J. Clim. 1998. V. 11. P. 2223–2237.