Vol. 31, issue 11, article # 10

Sukharev A. A. Aeroptical effects caused by supersonic airflow around an ogival body. // Optika Atmosfery i Okeana. 2018. V. 31. No. 11. P. 917–922. DOI: 10.15372/AOO20181110 [in Russian].
Copy the reference to clipboard
Abstract:

An optical model of a shock wave formed due to supersonic airflow around a body of an ogival form is developed. Mean values of airflow parameters were calculated from the Navier–Stokes equations using the CFD Fluent 6.0 software package, taking into account the compressibility of the gas. It is shown that the maximum values of the structural characteristic are several orders of magnitude larger than the values typical for the unperturbed shock wave of the atmosphere. Results of calculation of the mean intensity and deviation from the rectilinear direction of propagation of the optical beam crossing a shock wave at the beginning of a path in a homogeneous medium are presented. It is shown that an increase in the aircraft speed leads to an increase in the transverse dimensions of the beam due to diffraction. Magnitude of angular displacements of a beam crossing the shock wave depends only on the altitude above the Earth's surface at which the shock wave is formed. The impact of shock wave on the crossing beam decreases as the altitude increases.

Keywords:

ogival body, mean intensity, homogeneous medium

References:

    1. Banakh V.A., Sukharev A.A., Falits A.V. Difraktsiya opticheskogo puchka na udarnoj volne, voznikayushchej vblizi sverkhzvukovogo letatel'nogo apparata // Optika atmosf. i okeana. 2013. V. 26, N 11. P. 932–941.
   2. Sukharev A.A., Falits A.V. Fokusirovka i otklonenie ot pryamolinejnogo rasprostraneniya lazernogo puchka vsledstvie prokhozhdeniya udarnoj volny pri dal'nejshem rasprostranenii v odnorodnoj srede // Izv. vuzov. Fizika. 2013. N 8/3. P. 350–352.
   3. Banakh V.A., Sukharev A.A., Falits A.V. Optical beam distortions induced by a shock wave // Appl. Opt. 2015. V. 54, iss. 8. P. 2023–2031.
   4. Banakh V.A., Sukharev A.A., Falits A.V. Proyavlenie aeroopticheskikh effektov v turbulentnoj atmosfere pri sverkhzvukovom dvizhenii konusoobraznogo tela // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 679–688; Banakh V.A., Sukharev A.A., Falits A.V. Manifestation of Aero-Optical Effects in a Turbulent Atmosphere in Supersonic Motion of a Conical Body // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 24–33.
   5. Sukharev A.A., Falits A.V. Raspredelenie srednej intensivnosti i napravleniya rasprostraneniya opticheskikh puchkov pri prokhozhdenii udarnoj volny, formiruemoj dvizhushchimsya v atmosfere so sverkhzvukovoj skorost'yu letatel'nym apparatom // Izv. vuzov. Fizika. 2012. N 8/2. P. 198–200.
   6. Sukharev A.A., Falits A.V. Opredelenie granits preobladayushchego vliyaniya udarnoj volny na opticheskij puchok, rasprostranyayushchijsya v turbulentnoj atmosfere // Izv. vuzov. Fizika. 2013. N 8/3. P. 353–355.
   7. Banakh V.A., Sukharev A.A. Iskazheniya lazernykh puchkov, vyzyvaemye udarnoj volnoj vblizi tureli sverkhzvukovogo letatel'nogo apparata // Optika atmosf. i okeana. 2016. V. 29, N 1. P. 14–22; Banakh V.A., Sukharev A.A. Laser beam distortions caused by a shock wave near the turret of a supersonic aircraft // Atmos. Ocean. Opt. 2016. V. 29, N 3. P. 225–233.
   8. Banakh V.A., Sukharev A.A. Vklad atmosfernoj turbulentnosti v iskazheniya lazernykh puchkov, vyzyvaemye udarnoj volnoj, formiruyushchejsya pri sverkhzvukovom obtekanii tureli // Optika atmosf. i okeana. 2016. V. 29, N 4. P. 257–262.
   9. Frumker E., Pade O. Generic method for aero-optic evaluations // Appl. Opt. 2004. V. 43, N 16. P. 3224–3228.
10. Pade O. Propagation through Shear Layers // Proc. SPIE. 2006. V. 6364. P. 63640E.
11. Volkov K.N., Emel'yanov V.N. Aeroopticheskie effekty v turbulentnom potoke i ikh modelirovanie // Zhurn. tekhn. fiz. 2008. V. 78, iss. 2. P. 77–82.
12. Henriksson M., Sjöqvist L., Fureby C. Numerical laser beam propagation using large eddy simulation of a jet engine flow field // Opt. Eng. V. 54, iss. 8. DOI: 10.1117/1.OE.54.8.085101.
13. Henriksson M., Eisele Ch., Seiffer D., Sjöqvist L., Togna F., Velluet M.-Th. Airborne platform effects on lasers and warning sensors // Proc. SPIE. 2017. V. 10435. DOI: 10.1117/12.2277311.
14. Bo L., Hong L. Aero-Optical Characteristics of Supersonic Flow over Blunt Wedge with Cavity Window // J. Shanghai Jiaotong Univ. 2011. V. 16(6). P. 742–749.
15. Xu L., Cai Y. Influence of altitude on aero-optic imaging deviation // Appl. Opt. 2011. V. 50, N 18. P. 2949–2957.
16. Wang M., Mani A., Gordeev S. Physics and Computation of Aero-Optics // Annu. Rev. Fluid Mech. 2012. V. 44. P. 299–321.
17. Gao Q., Yi S.H., Jiang Z.F., He L., Zhao Y.X. Hierarchical structure of the optical path length of the supersonic turbulent boundary layer // Opt. Express. 2012. V. 20. P. 16494–16503.
18. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. M.: Nauka, 1965. Part 1. 641 p.
19. Wilcox D.C. Turbulence modeling for CFD. La Canada, California: DCW Industries, Inc., 2006. 522 p.
20. Banakh V.A., Marakasov D.A., Sukharev A.A. Vosstanovlenie strukturnoj kharakteristiki pokazatelya prelomleniya i srednej plotnosti vozdukha v udarnoj volne, voznikayushchej pri sverkhzvukovom obtekanii prepyatstvij, iz opticheskikh izmerenij // Optika i spektroskopiya. 2011. V. 111, N 6. P. 1032–1037.
21. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. M.: Nauka, 1967. Part 2. 720 p.
22. Smits A.J., Dussauge J.-P. Turbulent shear layers in supersonic flow. New York: AIP Press, 1996. 357 p.
23. Gurvich A.S., Kon A.I., Mironov V.L., Khmelevtsov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 280 p.
24. Wang K., Wang M. Aero-optics of subsonic turbulent boundary layers // J. Fluid Mech. 696. 2012. P. 122–151.
25. Gao Q., Yi S.H., Jiang Z.F., He L., Wang Xi Structure of the refractive index distribution of the supersonic turbulent boundary layer // Opt. Lasers Engin. 2013. V. 51, iss. 9. P. 1113–1119.
26. Zuev V.E., Banakh V.A., Pokasov V.V. Optika turbulentnoj atmosfery. Sovremennye problemy atmosfernoj optiki. L.: Gidrometeoizdat, 1988. V. 5. 270 p.
27. Kandidov V.P. Metod Monte-Karlo v nelinejnoj statisticheskoj optike // Uspekhi fiz. nauk. 1996. V. 166, N 12. P. 1309–1338.