Vol. 32, issue 05, article # 7

Timofeev D. N., Konoshonkin A. V., Kustova N. V., Shishko V. A., Borovoy A. G. Influence of absorption on light scattering on atmospheric ice crystals for wavelengths typical to lidar sounding. // Optika Atmosfery i Okeana. 2019. V. 32. No. 05. P. 381–385. DOI: 10.15372/AOO20190507 [in Russian].
Copy the reference to clipboard
Abstract:

The numerical solution within the geometrical optics approximation of the light scattering matrices for ice crystals with arbitrary shape taking the absorption into account were presented. The results show that the absorption decreases the intensity of scattered light when a wavelength goes far to the IR. It was shown that the influence of absorption is less than basis points for 0.355 and 0.532 mm wavelengths, and less than several percent for 1.064 mm. For the near IR the influence of that effect could be more than several dozen percent.

Keywords:

light scattering, absorption, ice crystals, geometrical optics, cirrus clouds

References:

  1. Liou K.N. Influence of cirrus clouds on weather and climate processes: A global perspective // Mon. Weather Rev. 1986. V. 114, N 6. P. 1167–1199.
  2. Takano Y., Liou K.N. Solar radiative transfer in cirrus clouds. Part I. Single scattering and optical properties of hexagonal ice crystals // J. Atmos. Sci. 1989. V. 46, N 1. P. 3–19.
  3. Sassen K., Benson S. A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization // J. Atmos. Sci. 2001. V. 58, N 15. P. 2103–2112.
  4. Konoshonkin A.V., Shishko V.A., Kustova N.V., Boro-voi A.G., Timofeev D.N. Problem of light scattering by atmospheric ice crystals // Proc. SPIE. 2017. P. 104662C.
  5. Kunz K.S., Luebbers R.J. Finite Difference Time Domain Method for Electromagnetics. Boca Raton, FL: CRC Press, 1993. 464 p.
  6. Taflove A. Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston: Artech House, 1998. 735 p.
  7. Ishimoto H., Masuda K., Mano Y., Orikasa N., Uchi-yama A. Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 8. P. 632–643.
  8. Yang P., Bi L., Kattawar G., Panetta R.L. Optical properties of nonspherical atmospheric particles and relevant applications // AAPP Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali. 2011. V. 89, suppl. 1. DOI: 10.1478/C1V89S1P012.
  9. Purcell E.M., Pennypacker C.R. Scattering and absorption of light by nonspherical dielectric grains // Astrophys. J. 1973. V. 186. P. 705–714.
  10. Yurkin M.A., Maltsev V.P., Hoekstra A.G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 106. P. 546–557.
  11. Yurkin M.A., Hoekstra A.G. The discrete-dipole-appro-ximation code ADDA: Capabilities and known limitations // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2234–2247.
  12. Liu J., Bi L., Yang P., Kattawar G.W Scattering of partially coherent electromagnetic beams by water droplets and ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 134. P. 74–84.
  13. Ori D., Kneifel S. Assessing the uncertainties of the discrete dipole approximation in case of melting ice particles // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 217. P. 396–406.
  14. Arienti M., Geier M., Yang X., Orcutt J., Zenker J., Brooks S.D. An experimental and numerical study of the light scattering properties of ice crystals with black carbon inclusions // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 211. P. 50–63.
  15. Fenni I., Haddad Z.S., Roussel H., Mittra R.  Efficient calculation of orientationally averaged scattering from complex-geometry ice particles // IEEE Intern. Geosc. and Remote Sensing Sympos. Texas, 2017. P. 4471–4474.
  16. Grynko Y., Shkuratov Y., Förstner J. Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness // Opt. Lett. 2016. V. 41, N 15. P. 3491.
  17. Borovoi A.G., Grishin I.A. Scattering matrices for large ice crystal particles // J. Opt. Soc. Am. A. 2003. V. 20. P. 2071–2080.
  18. Borovoi A., Konoshonkin A., Kustova N. The physics optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189.
  19. Bi L., Yang P. Physical-geometric optics hybrid methods for computing the scattering and absorption properties of ice crystals and dust aerosols // Light Scattering Reviews 8. Berlin, Heidelberg: Springer-Verlag, 2013. P. 69–114.
  20. Bi L., Yang P., Kattawar G.W., Hu Y., Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 9. P. 1492–1508.
  21. Sun B., Yang P., Kattawar G.W., Zhang X. Physical-geometric optics method for large size faceted particles // Opt. Express. 2017. V. 25, N 20. P. 24044–24060.
  22. Zhou C., Yang P. Backscattering peak of ice cloud particles // Opt. Express. 2015. V. 23, N 9. P. 11995–12003.
  23. Borovoi A., Konoshonkin A., Kustova N. Backscattering by hexagonal ice crystals of cirrus clouds // Opt. Lett. 2013. V. 38, N 15. P. 2881–1884.
  24. Konoshonkin A.V., Kustova N.V., Borovoj A.G. Osobennosti v depolyarizatsionnom otnoshenii lidarnykh signalov dlya khaoticheski orientirovannykh ledyanykh kristallov peristykh oblakov // Optika atmosf. i okeana. 2013. V. 26, N 5. P. 385–387.
  25. Konoshonkin A., Wang Z., Borovoi A., Kustova N., Liu D., Xie C. Backscatter by azimuthally oriented ice crystals of cirrus clouds // Opt. Express. 2016. V. 24, N 18. P. A1257–A1268.
  26. Konoshonkin A.V. Modelirovanie signala skaniruyushchego lidara ot monodispersnogo oblaka kvazigorizontal'no orientirovannykh chastits // Optika atmosf. i okeana. 2016. V. 29, N 12. P. 1053–1060.
  27. Baran A.J. On the scattering and absorption properties of cirrus cloud // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 89, N 1–4. P. 17–36.
  28. Hess M., Koepke P., Schult I. Optical properties of aerosols and clouds: The software package OPAC // Bull. Am. Math. Soc. 1998. V. 79. P. 831–844.
  29. Baum B.A., Yang P., Heymsfield A.J., Bansemer A., Cole B.H., Merrelli A., Schmitt C., Wang C. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 123–139.
  30. Cai Q., Liou K.-N. Polarized light scattering by hexagonal ice crystals: Theory // Appl. Opt. 1982. V. 21. P. 3569–3580.
  31. Macke A. Scattering of light by polyhedral ice crystals // Appl. Opt. 1993. V. 32. P. 2780–2788.
  32. Timofeev D.N., Konoshonkin A.V., Kustova N.V., Borovoi A.G. Backscattering matrices calculation for atmospheric ice crystals within the physical optics approximation with absorption effect // Proc. SPIE. 2018. V. 10833. P. 10833–174.
  33. Auer A.H., Veal D.L. The dimension of ice crystals in natural clouds // J. Atmos. Sci. 1970. V. 27, N 6. P. 919–926.
  34. Um J., McFarquhar G.M., Hong Y.P., Lee S.-S., Jung C.H., Lawson R.P., Mo Q. Dimensions and aspect ratios of natural ice crystals // Atmos. Chem. Phys. 2015. V. 15. P. 3933–3956.
  35. Volkovitskij O.A., Pavlova L.N., Petrushin A.G. Opticheskie svojstva kristallicheskikh oblakov. L.: Gidrometeoizdat, 1984. 198 p.
  36. Timofeev D.N., Konoshonkin A.V., Kustova N.V. Algoritm Modified beam-splitting 1 (MBS-1) dlya resheniya zadachi rasseyaniya sveta na nevypuklykh ledyanykh atmosfernykh chastitsakh // Optika atmosf. i okeana. 2018. V. 31, N 6. P. 473–480; Timofeev D.N., Kono-shonkin A.V., Kustova N.V. Modified Beam-Splitting 1 (MBS-1) Algorithm for solving the problem of light scattering by nonconvex atmospheric ice particles // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 642–649.
  37. Boren K., Khafmen D. Pogloshchenie i rasseyanie sveta malymi chastitsami. M.: Mir, 1986. 660 p.
  38. Warren S.G. Optical constants of ice from the ultraviolet to the microwave // Appl. Opt. 1984. V. 23. P. 1206–1225.
  39. Mitchell D.L., Arnott W.P. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II. Radiation // J. Atmos. Sci. 1994. V. 51. P. 817–832.