Vol. 32, issue 11, article # 3

Romanovskii O. A., Sadovnikov S. A., Kharchenko O. V., Yakovlev S. V. Remote analysis of methane content in the atmosphere by an IR DIAL lidar system in the 3300–3430-nm spectral range. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 896–901. DOI: 10.15372/AOO20191103 [in Russian].
Copy the reference to clipboard
Abstract:

A differential absorption lidar (DIAL) system based on optical parametric oscillators (OPO) with nonlinear KTA and KTP crystals is designed. The crystals allow laser radiation tuning in the IR wavelength region. A series of experiments on remote monitoring of methane along a horizontal surface sounding path in the 3300–3430-nm spectral range was carried out. Based on the experimental results, the CH4 concentrations along the 800 m surface path are retrieved in the spectral range under study with a spatial resolution of 100 m.

Keywords:

lidar, infrared region, optical parametric oscillator, differential absorption, methane

Figures:
References:

  1. Reghunath A.T., Malhotra P., Kumar Y., Bhushan B. Design of a tunable mid-IR OPO source for DIAL detection of trace gases // Proc. SPIE. 2006. V. 6409. P. 64091B-1–11. URL: https://doi.org/10.1117/12.697916 (last access: 2.08.2019).
  2. Douglass K.O., Maxwell S.E., Plusquellic D.F., Hodges J.T., van Zee R.D., Samarov D.V., Whetstone J.R. Construction of a high power OPO laser system for differrential absorption LIDAR // Proc. SPIE. 2011. V. 8159. P. 81590D-1–9. URL: https://doi.org/10.1117/12.894089 (last access: 2.08.2019).
  3. Barrientos-Barria J., Dherbecourt J., Raybaut M., Godard A., Melkonian J.M., Lefebvre M.H., Faure B., Souhaite G. 3.3–3.7 mm Nested cavity OPO pumped by an amplified micro-laser for portable DIAL // 2013 Conf. on Lasers & Electro-Optics Europe & Intern. Quantum Electronics Conf. DOI: 10.1109/CLEOE-IQEC.2013.6800859.
  4. Amoruso S., Amodeo A., Armenante M., Boselli A., Mona L., Pandolfi M., Pappalardo G., Velotta R., Spinelli N., Wang X. Development of a tunable IR lidar system // Optics and Lasers in Engineering. 2002. V. 37, N 5. P. 521–532. URL: https://doi.org/10.1016/S0143-8166(01)00115-4 (last access: 2.08.2019).
  5. Ajrapetyan V.S. Izmerenie spektrov pogloshcheniya atmosfernogo metana lidarnym kompleksom s perestrojkoj dliny volny izlucheniya v diapazone 1,41–4,24 mm // Zhurn. prikladnoj spektroskopii. 2009. V. 76, N 2. P. 285–290.
  6. Ajrapetyan V.S. Parametricheskij generator sveta s plavnoj i(ili) diskretnoj perestrojkoj chastoty izlucheniya // Optika atmosf. i okeana. 2008. V. 21, N 10. P. 906–909.
  7. Amediek A., Fix A., Wirth M., Ehret G. Development of an OPO system at 1.57 mm for integrated path DIAL measurement of atmospheric carbon dioxide // Appl. Phys. B. 2008. V. 92, N 2. P. 295–302. URL: https://doi.org/10.1007/s00340-008-3075-6 (last access: 2.08.2019).
  8. Barrientos-Barria J., Dobroc A.A., Coudert-Alteirac H., Raybaut M., Cezard N., Dherbecourt J.-P., Faure B., Souhaité G., Melkonian J.-M., Godard A., Lefebvre M., Pelon J. 3.3–3.7 mm OPO/OPA optical source for multi-species 200 m range integrated path differential absorption lidar // Applications of lasers for sensing and free space communications. Opt. Soc Am. (2013). URL: https://doi.org/10.1364/LSC.2013.LTh1B.4.
  9. Mammez D., Cadiou E., Dherbecourt J.-P., Raybaut M., Melkonian J.-M., Godard A., Gorju G., Pelon J., Lefebvre M. Multispecies transmitter for DIAL sensing of atmospheric water vapour, methane and carbon dioxide in the 2 mm region // Proc. SPIE. 2015. V. 9645. P. 964507-1–9. URL: https://doi.org/10.1117/12.2194754 (last access: 2.08.2019).
  10. Robinson I., Jack J.W., Rae C.F., Moncrieff J.B. Development of a laser for differential absorption lidar measurement of atmospheric carbon dioxide // Proc. SPIE. 2014. V. 9246. P. 92460U-1–6. URL: https://doi.org/10.1117/12.2068023 (last access: 2.07.2019).
  11. Robinson I., Jack J.W., Rae C.F., Moncrieff J.B. A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases // Proc. SPIE. 2015. V. 9645. P. 96450U-1–7. URL: https: //doi.org/10.1117/12.2197251 (last access: 2.07.2019).
  12. Mitev V., Babichenko S., Borelli R., Fiorani L., Grigorov I., Nuvoli M., Palucci A., Pistilli M., Puiu Ad., Rebane O., Santoro S. Lidar extinction measurement in the mid-infrared // Proc. SPIE. 2014. V. 9292. P. 92923W-1–4. URL: https://doi.org/10.1117/12.2075832 (last access: 2.07.2019).
  13. Mid-infrared light hydrocarbon dial lidar: Patent number 5250810. USA, G 01 N 21/35. Geiger A.R.; Filed 23.04.1992; Publication Date 05.10.1993.
  14. Multi-sensors and differential absorption LIDAR data fusion: Patent number 7411196. USA, G 01 S 17/02. Kalayeh H.M.; Filed 18.07.2006; Publication Date 22.02.2007.
  15. Method and apparatus for wavelength locking free optical frequency comb based differential absorption Lidar: Patent number 8541744. USA, G 01 S 17/10. Liu J.; Filed 9.03.2013; Publication Date 24.09.2013.
  16. High-energy, broadband, rapid tuning frequency converter: Patent number 8837538. USA, H 01 S 3/0092. Foltynowicz R. Filed 26.09.2012; Publication Date 31.01.2013.
  17. Ajrapetyan V.S. Lazernoe distantsionnoe zondirovanie vzryvchatykh veshchestv metodom differentsial'nogo pogloshcheniya i rasseyaniya // Zhurn. prikladnoj spektroskopii. 2017. V. 84, N 6. P. 987–992.
  18. Ayrapetyan V.S., Fomin P.A. Laser detection of explosives based on differential absorption and scattering // Opt. Laser Technol. 2018. V. 106. P. 202–208. URL: https://doi.org/10.1016/j.optlastec.2018.04.001 (last access: 2.07.2019).
  19. Veerabuthiran S., Razdan A.K., Jindal M.K. et al. Development of 3.0–3.45 mm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane // Opt. Laser Technol. 2015. V. 73. P. 1–5. URL: https://doi.org/10.1016/j.optlastec.2015.04.007 (last access: 2.07.2019).
  20. Mitev V., Babichenko S., Bennes J., Borelli R., Dolfi-Bouteyre A., Fiorani L., Hespel L., Huet T., Palucci A., Pistilli M., Puiu A., Rebane O., Sobolev I. Mid-IR DIAL for high-resolution mapping of explosive precursors // Proc. SPIE. 2013. V. 8894. P. 88940S-1–13. URL: https://doi.org/10.1117/12.2028374 (last access: 2.07.2019).
  21. Cadiou E., Mammez D., Dherbecourt J.-B., Gorju G., Pelon J., Melkonian J.-M., Godard A., Raybaut M. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source // Opt. Lett. 2017. V. 42, N 5. P. 4044–4047. URL: https://doi.org/10.1364/OL.42.004044 (last access: 2.07.2019).
  22. Shibata Y., Nagasawa C., Abo M. Development of 1.6 mm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2 concentration profiles // Appl. Opt. 2017. V. 56, N 4. P. 1194–1201. URL: https://doi.org/10.1364/AO.56.001194 (last access: 2.07.2019).
  23. Romanovskij O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Shirokodiapazonnyj IK-lidar dlya gazoanaliza atmosfery // Zhurn. prikladnoj spektroskopii. 2018. V. 85, N 3. P. 448–453.
  24. Matvienko G.G., Romanovskij O.A., Sadovnikov S.A., Sukhanov A.Ya., Kharchenko O.V., Yakovlev S.V. Parametricheskij generator sveta v zadachakh zondirovaniya gazovykh sostavlyayushchikh atmosfery v spektral'nom diapazone 3–4 mm // Optika atmosf. i okeana. 2017. V. 30, N 7. P. 598–604. DOI: 10.15372/AOO20170708.
  25. Matvienko G.G., Romanovskij O.A., Sadovnikov S.A., Sukhanov A.Ya., Kharchenko O.V., Yakovlev S.V. Issledovanie vozmozhnosti primeneniya lazernoj sistemy na osnove parametricheskogo generatora sveta dlya lidarnogo zondirovaniya sostava atmosfery // Optich. zhurn. 2017. V. 84, N 6. P. 58–65.
  26. Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Development of Near/Mid IR differential absorption OPO lidar system for sensing of atmospheric gases // Opt. Laser Technol. 2019. V. 116. P. 43–47. URL: https://doi.org/10.1016/j.optlastec.2019.03.011 (last access: 2.08.2019).
  27. Romanovskii O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Near/mid-IR OPO lidar system for gas analysis of the atmosphere: simulation and measurement results // Optical Memory & Neural Networks (Inform. Opt.). 2019. V. 28, N 1. P. 1–10. DOI: 10.3103/S1060992X19010053.
  28. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.-A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.-M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Auwera J. Vander, Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 Molecular Spectroscopic Database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69. URL: https://doi.org/10.1016/j.jqsrt.2017.06.038 (last access: 2.08.2019).
  29. URL: http://lop.iao.ru/EN/tor/gas/ (last access: 1.02.2019).
  30. Davydov D.K., Belan B.D., Antokhin P.N., Antokhina O.Yu., Antonovich V.V., Arshinova V.G., Arshinov M.Yu., Akhlestin A.Yu., Belan S.B., Dudorova N.V., Ivlev G.A., Kozlov A.V., Pestunov D.A., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fazliev A.Z., Fofonov A.V. Monitoring atmosfernykh parametrov: 25 let TOR-stantsii IOA SO RAN // Optika atmosf. i okeana. 2018. V. 31, N 10. P. 845–853. DOI: 10.15372/AOO20181011.