Vol. 33, issue 01, article # 2

Gerasimov V. V. The effect of collisional line broadening on the accuracy of tropospheric temperature measurements using pure rotational Raman lidars. // Optika Atmosfery i Okeana. 2020. V. 33. No. 01. P. 14–24. DOI: 10.15372/AOO20200102 [in Russian].
Copy the reference to clipboard
Abstract:

The effect of collisional line broadening on the accuracy of tropospheric (0–11 km) temperature retrievals from pure rotational Raman lidar raw signals is estimated via numerical simulation. The simulation was performed for three sets of spectral filters with different passbands in a lidar receiving system. A narrow-linewidth laser with a wavelength of 532 nm was considered as a lidar transmitter. A comparative analysis of temperature retrieval errors (calibration errors) produced by using nine calibration functions is presented. The calibration function retrieving tropospheric temperature with the least errors is determined for each set of filters.

Keywords:

Raman scattering, lidar, spectral line broadening, calibration function, tropospheric temperature

References:

  1. Weitkamp C. Lidar: range-resolved optical remote sensing of the atmosphere // Springer Ser. in Opt. Sci. 2005. V. 102. 456 p.
  2. Bobrovnikov S.M., Nadev A.I. Sravnenie metodov obrabotki signala pri distantsionnom izmerenii temperatury po chisto vrashchatel'nym spektram kombinatsionnogo rasseyaniya // Optika atmosf. i okeana. 2010. V. 23, N 7. P. 580–584; Bobrovnikov S.M., Nadeev A.I. Comparison of signal processing methods in remote temperature measurements by pure rotational Raman spectra // Atmos. Ocean. Opt. 2010. V. 23, N 6. P. 523–527.
  3. Bobrovnikov S.M., Nadev A.I. Sravnenie metodov obrabotki signala pri distantsionnom izmerenii temperatury po chisto vrashchatel'nym spektram kombinatsionnogo rasseyaniya // Optika atmosf. i okeana // Optika atmosf. i okeana. 2018. V. 31. N 7. P. 551–558; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. A Multi-Aperture Transceiver System of a Lidar with Narrow Field of View and Minimal Dead Zone // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 690–697.
  4. Behrendt A., Reichardt J. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator // Appl. Opt. 2000. V. 39, N 9. P. 1372–1378.
  5. Achtert P., Khaplanov M., Khosrawi F., Gumbel J. Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere // Atmos. Meas. Tech. 2013. V. 6, N 1. P. 91–98.
  6. Penney C.M., Peters R.L.St., Lapp M. Absolute rotational Raman cross sections for N2, O2, and CO2 // J. Opt. Soc. Am. 1974. V. 64, N 5. P. 712–716.
  7. Cooney J.A. Measurement of atmospheric temperature profiles by Raman backscatter // J. Appl. Meteorol. 1972. V. 11, N 1. P. 108–112.
  8. Kim D., Cha H., Lee J., Bobronikov S. Pure rotational Raman lidar for atmospheric temperature measurements // J. Korean Phys. Soc. 2001. V. 39, N 5. P. 838–841.
  9. Balin I., Serikov I., Bobrovnikov S., Simeonov V., Cal­pini B., Arshinov Y., van den Bergh H. Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar // Appl. Phys. B. 2004. V. 79, N 6. P. 775–782.
  10. Chen S., Qiu Z., Zhang Y., Chen H., Wang Y. A pure rotational Raman lidar using double-grating monochromator for temperature profile detection // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 2. P. 304–309.
  11. Jia J., Yi F. Atmospheric temperature measurements at altitudes of 5–30 km with a double-grating-based pure rotational Raman lidar // Appl. Opt. 2014. V. 53, N 24. P. 5330–5343.
  12. He J., Chen S., Zhang Y., Guo P., Chen H. A novel calibration method for pure rotational Raman lidar temperature profiling // J. Geophys. Res.: Atmos. 2018. V. 123, N 19. P. 10925–10934.
  13. Zuev V.V., Gerasimov V.V., Pravdin V.L., Pavlin­skiy A.V., Nakhtigalova D.P. Tropospheric temperature measurements with the pure rotational Raman lidar technique using nonlinear calibration functions // Atmos. Meas. Tech. 2017. V. 10, N 1. P. 315–332.
  14. Di Girolamo P., Marchese R., Whiteman D.N., Demoz B.B. Rotational Raman Lidar measurements of atmospheric temperature in the UV // Geophys. Res. Lett. 2004. V. 31, N 1. P. L01106.
  15. Radlach M., Behrendt A., Wulfmeyer V. Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields // Atmos. Chem. Phys. 2008. V. 8, N 2. P. 159–169.
  16. Newsom R.K., Turner D D., Goldsmith J.E.M. Long-term evaluation of temperature profiles measured by an operational Raman lidar // J. Atmos. Oceanic Technol. 2013. V. 30, N 8. P. 1616–1634.
  17. Hammann E., Behrendt A., Le Mounier F., Wulfmeyer V. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment // Atmos. Chem. Phys. 2015. V. 15, N 5. P. 2867–2881.
  18. Mao J., Hu L., Hua D., Gao F., Wu M. Pure rotational Raman lidar with fiber Bragg grating for temperature profiling of the atmospheric boundary layer // Opt. Appl. 2008. V. 38, N 4. P. 715–726.
  19. Arshinov Yu., Bobrovnikov S. Use of a Fabry–Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules // Appl. Opt. 1999. V. 38, N 21. P. 4635–4638.
  20. Arshinov Yu., Bobrovnikov S., Serikov I., Ansmann A., Wandinger U., Althausen D., Mattis I., Müller D. Daytime operation of a pure rotational Raman lidar by use of a Fabry–Perot interferometer // Appl. Opt. 2005. V. 44, N 17. P. 3593–3603.
  21. Hauchecorne A., Keckhut P., Mariscal J.-F., d’Almeida E., Dahoo P.-R., Porteneuve J. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude // EPJ Web Conf. 2016. V. 119. P. 06008. DOI: 10.1051/epjconf/ 201611906008.
  22. Weng M., Yi F., Liu F., Zhang Y., Pan X. Single-line-extracted pure rotational Raman lidar to measure atmospheric temperature and aerosol profiles // Opt. Express. 2018. V. 26, N 21. P 27555–27571.
  23. Arshinov Yu.F., Bobrovnikov S.M., Zuev V.E., Mitev V.M. Atmospheric temperature measurements using a pure rotational Raman lidar // Appl. Opt. 1983. V. 22, N 19. P. 2984–2990.
  24. Behrendt A., Nakamura T., Onishi M., Baumgart R., Tsuda T. Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient // Appl. Opt. 2002. V. 41, N 36. P. 7657–7666.
  25. Hammann E., Behrendt A. Parametrization of optimum filter passbands for rotational Raman temperature measurements // Opt. Express. 2015. V. 23, N 24. P. 30767–30782.
  26. Chen H., Chen S.Y., Zhang Y.C., Guo P., Chen H., Chen B.L. Robust calibration method for pure rotational Raman lidar temperature measurement // Opt. Express. 2015. V. 23, N 16. P. 21232–21242.
  27. Yan Q., Wang Y., Gao T., Gao F., Di H., Song Y., Hua D. Optimized retrieval method for atmospheric tem­perature profiling based on rotational Raman lidar // Appl. Opt. 2019. V. 58, N 19. P. 5170–5178.
  28. Nedelikovich D., Hauchecorne A., Chanin M.L. Rotational Raman lidar to measure temperature from the ground to 30 km // IEEE Trans. Geosci. Remote Sens. 1993. V. 31, N 1. P. 90–101.
  29. Lee III R.B. Tropospheric temperature measurements using a rotational Raman lidar: Ph.D. dissertation. Ham­pton, Virginia: Hampton University, 2013. 112 p. URL: https://pqdtopen.proquest.com/doc/1437652821.html?FMT=ABS (last access: 23.08.2019).
  30. Gerasimov V.V., Zuev V.V. Analytical calibration fun­ctions for the pure rotational Raman lidar technique // Opt. Express. 2016. V. 24, N 5. P. 5136–5151.
  31. Gerasimov V.V. Comparative analysis of calibration functions in the pure rotational Raman lidar technique // Appl. Phys. B. 2018. V. 124, N 7. P. 134.
  32. Mezheris R.M. Lazernoe distantsionnoe zondirovanie. M.: Mir, 1987. 550 p; Measures R.M. Laser remote sensing, fundamentals and applications. Wiley, 1984. 510 p.
  33. Kochanov V.P. Sravnenie konturov spektral'nyh linij v modelyah sil'nyh i slabyh stolknovenij // Optika atmosf. i okeana. 2019. V. 32, N 2. P. 87–95; Kochanov V.P. Comparison of Spectral Line Profiles in Hard and Soft Collision Models // Atmos. Ocean. Opt. 2019. V. 32, N 3. P. 257–265.
  34. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539.pdf (last access: 23.08.2019).
  35. Kurs fizicheskoj himii, V. 2 / Ya.I. Gerasimov (red.). M.: Himiya, 1973. 624 p; Gerasimov Y.I. Course in Physical Chemistry. Khimiya, 1973. V. 2. 624 p. [in Russian].
  36. Olivero J.J., Longbothum R.L. Empirical fits to the Voigt line width: A brief review // J. Quant. Spectrosc. Radiat. Transfer. 1977. V. 17, N 2. P. 233–236.
  37. Li Y.J., Song S.L., Li F.Q., Cheng X.W., Chen Z.W., Liu L.M., Yang Y., Gong S.S. High-precision measu­rements of lower atmospheric temperature based on pure rotational Raman lidar // Chinese J. Geophys. 2015. V. 58, N 4. P. 313–324.
  38. Wu D., Wang Z., Wechsler P., Mahon N., Deng M., Glover B., Burkhart M., Kuestner W., Heesen B. Airborne compact rotational Raman lidar for temperature measurement // Opt. Express. 2016. V. 24, N 18. P. A1210–A1223.
  39. Li Y.J., Lin X., Song S.L., Yang Y., Cheng X.W., Chen Z.W., Liu L.M., Xia Y., Xiong J., Gong S.S., Li F.Q. A combined rotational Raman–Rayleigh lidar for atmospheric temperature measurements over 5–80 km with self-calibration // IEEE Trans. Geosci. Remote. Sens. 2016. V. 54, N 12. P. 7055–7065.
  40. Li Y.J., Lin X., Yang Y., Xia Y., Xiong J., Song S.L., Liu L.M., Chen Z.W., Cheng X.W., Li F.Q. Temperature characteristics at altitudes of 5–80 km with a self-calibrated Rayleigh-rotational Raman lidar: A summer case study // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 188. P. 94–102.
  41. Behrendt A., Nakamura T., Tsuda T. Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere // Appl. Opt. 2004. V. 43, N 14. P. 2930–2939.
  42. Su J., McCormick M.P., Wu Y.H., Lee III R.B., Lei L.Q., Liu Z.Y., Leavor K.R. Cloud temperature measurement using rotational Raman lidar // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 125. P 45–50.
  43. Bazhulin P.A. Issledovanie vrashchatel'nyh i vrashchatel'no-kolebatel'nyh spektrov gazov metodom kombinatsionnogo rasseyaniya sveta // Uspekhi fiz. nauk. 1962. V. 77, N 8. P. 639–648.