Vol. 33, issue 07, article # 9

Bobrovnikov S. M., Gorlov E. V., Zharkov V. I., Trifonov D. A. The alignment technique and quality check of the large mirror of the Siberian lidar station. // Optika Atmosfery i Okeana. 2020. V. 33. No. 07. P. 559–564. DOI: 10.15372/AOO20200709 [in Russian].
Copy the reference to clipboard
Abstract:

The alignment technique and quality check of the large mirror of the Siberian lidar station (SLS) with the diameter of 2.2 m is considered. The results of computer simulation of the field aberrations of the large mirror are presented and the area of the coma-free region is determined. The spot diagram of the large SLS mirror is measured by estimating the image size of stars passing through the zenith are presented. The numerical simulation of the lidar signal using ray tracing in the optical CAD ZEMAX is carried out taking into account the influence of a real scattering circle of the receiving optical system. The shape of the experimentally registered and ray tracing simulated lidar signal is compared.

Keywords:

megalidar, Raman scattering, laser, atmosphere, Siberian lidar station

References:

  1. Bobrovnikov S.M., Gorlov E.V., Trifonov D.A., Zharkov V.I. Lidar complex for measuring the atmospheric temperature at the Siberian lidar station // Proc. SPIE. 2019. V. 11208. P. 112083S-1–6.
  2. Von Zahn U., von Cossart G., Fiedler J., Fricke K.H., Nelke G., Baumgarten G., Rees D., Hauchecorne A., Adolfsen K. The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance // Ann. Geophys. 2000. V. 18, iss. 7. P. 815–833.
  3. Schoch A., Baumgarten G., Fiedler J. Polar middle atmosphere temperature climatology from Rayleigh lidar measurements at ALOMAR (69° N) // Ann. Geophys. 2008. V. 26, N 7. P. 1681–1698. 
  4. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Struktura turbulentnyh dvizhenij vozduha v shahte glavnogo zerkala Sibirskoj lidarnoj stantsii IOA SO RAN. Eksperiment i chislennoe modelirovanie // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 905–910. 
  5. Sikoruk L.L. Teleskopy dlya lyubitelej astronomii. M.: Nauka, 1989. 368 p.
  6. Maksutov D.D. Izgotovlenie i issledovanie astronomicheskoj optiki. M.: Nauka, Fizmatlit, 1984. 272 p. 
  7. Kaledin B.F. Kreplenie opticheskih detalej elastichnymi materialami. M.: Mashinostroenie, 1990. 159 p. 
  8. Kaul' B.V. Antennyj kompleks dlya lazernogo zondirovaniya verhnih sloev atmosfery // Optika atmosf. i okeana. 1992. V. 5, N 4. P. 431–438. 
  9. URL: https://stellarium.org/ru (last access: 26.02.2020).
  10. Dinoev T., Simeonov V., Arshinov Y., Bobrovnikov S., Ristori P., Calpini B., Parlange M., van den Bergh H. Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description // Atmos. Meas. Tech. 2013. V. 6. P. 1329–1346. 
  11. Reichardt J., Wandinger U., Klein V., Mattis I., Hilber B., Begbie R. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements // Appl. Opt. 2012. V. 51. P. 8111–8131. 
  12. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Mnogoaperturnaya priemoperedayushchaya sistema lidara s uzkim polem zreniya i minimal'noj mertvoj zonoj zondirovaniya // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 551–558. DOI: 10.15372/AOO20180708; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. A multi-aperture transceiver system of a lidar with narrow field of view and minimal dead // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 690–697. DOI: 10.1134/S1024856018060052. 
  13. GOST 4401-81. Atmosfera standartnaya. Parametry. M.: IPK Izd-vo standartov, 2004. 180 p. 
  14. Cohen A., Cooney J.A., Geller K.N. Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering // Appl. Opt. 1976. V. 15, N 11. P. 2896–2901.