Vol. 34, issue 05, article # 10

Nerobelov G. M., Timofeev Yu. M. Estimates of CO2 exchange over the water surface near the St. Petersburg metropolitan area. // Optika Atmosfery i Okeana. 2021. V. 34. No. 05. P. 374–379. DOI: 10.15372/AOO20210510 [in Russian].
Copy the reference to clipboard
Abstract:

Air–sea CO2 exchange over the Gulf of Finland according to SOCOM ship measurements during March and April 2019 have been assessed to determine the possible impact of the water surface on estimates of St. Petersburg anthropogenic emissions. It was found that the surface of the Gulf of Finland is a source of CO2 in March and a sink in April 2019. CO2 fluxes per unit area of the water surface of the Gulf of Finland were on average significantly smaller (by 1-2 orders) than the anthropogenic emissions of St. Petersburg. Contribution of the Gulf of Finland surface to CO2 content of air masses passing over the water surface in March-April 2019 was small on average in comparison with the contribution of St. Petersburg according to EMME (Emission Monitoring Mobile Experiment) measurements and ODIAC data (less than 1% of the cities contribution). For extreme wind speeds above the water surface and differences in the partial CO2 pressure in water and air, the contribution of the Gulf of Finland to the CO2 content of the air masses can reach almost 3% in relation to the anthropogenic contribution of St. Petersburg.
 

Keywords:

CO2 emissions and absorption, sea surface, the Gulf of Finland, SOCOM, EMME, ODIAC

References:

  1. World Energy Outlook 2008 [Электронный ресурс]. URL: https://www.iea.org/reports/world-energy-outlook-2008 (last access: 25.02.2021).
  2. Andres R.J., Boden T.A., Breon F.-M., Ciais P., Davis S., Erickson D., Gregg J.S., Jacobson A., Marland G., Miller J., Oda T., Olivier J.G.J., Raupach M.R., Rayner P., Treanton K. A synthesis of carbon dioxide emissions from fossil-fuel combustion // Biogeosci. 2012. V. 9. P. 1845–1871.
  3. Bergamaschi P., Danila A., Weiss R.F., Ciais P., Thompson R.L., Brunner D., Levin I., Meijer Y., Chevallier F., Janssens-Maenhout G., Bovensmann H., Crisp D., Basu S., Dlugokencky E., Engelen R., Gerbig C., Günther D., Hammer S., Henne S., Houweling S., Karstens U., Kort E., Maione M., Manning A.J., Miller J., Montzka S., Pandey S., Peters W., Peylin P., Pinty B., Ramonet M., Reimann S., Röckmann T., Schmidt M., Strogies M., Sussams J., Tarasova O., van Aardenne J., Vermeulen A.T., Vogel F. Atmospheric monitoring and inverse modelling for verification of greenhouse gas inventories // JRC Science for policy report. Luxembourg, 2018. ISBN 978-92-79-88938-7, DOI: 10.2760/759928, JRC111789.
  4. Frey M., Hase F., Blumenstock T., Groß J., Kiel M., Mengistu Tsidu G., Schäfer K., Sha K.M., Orphal J. Calibration and instrumental line shape characterization of a set of portable FTIR spectrometers for detecting greenhouse gas emissions // Atmos. Meas. Tech. 2015. V. 8. P. 3047–3057.
  5. Hase F., Frey M., Blumenstock T., Groß J., Kiel M., Kohlhepp R., Mengistu Tsidu G., Schäfer K., Sha M.K., Orphal J. Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin // Atmos. Meas. Tech. 2015. V. 8. P. 3059–3068.
  6. Makarova M.V., Alberti C., Ionov D.V., Hase F., Foka S.C., Blumenstock T., Warneke T., Virolainen Y.A., Kostsov V.S., Frey M., Poberovskii A.V., Timofeyev Y.M., Paramonova N.N., Volkova K.Yu., Zaitsev N.A., Biryukov E.Yu., Osipov S.I., Makarov B.K., Polyakov A.V., Ivakhov V.M., Imhasin H.Kh., Mikhailov E.F. Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign-2019 // Atmos. Meas. Tech. 2021. V. 14. P. 1047–1073.
  7. Oda T., Maksyutov S. A very high-resolution (1 km ´ 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights // Atmos. Chem. Phys. 2011. V. 11. P. 543–556.
  8. Timofeev Yu.M., Nerobelov G.M., Virolajnen Ya.A., Poberovskij A.V., Foka S.Ch. Otsenki antropogennyh emissij CO2 megapolisa Sankt-Peterburga // Dokl. RAN. Nauki o Zemle. 2020. V. 494, N 1. P. 93–96.
  9. Takahashia T., Sutherlanda S.C., Sweeneya C., Poissonb A., Metzlb N., Tilbrookc B., Batesd N., Wanninkhofe R., Feelyf R.A., Sabinef Ch., Olafssong J., Nojiri Y. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects // Deep-Sea Res. II. 2002. V. 49. P. 1601–1622.
  10. Crowell S., Baker D., Schuh A., Basu S., Jacobson A.R., Chevallier F., Liu J., Deng F., Feng L., McKain K., Chatterjee A., Miller J.B., Stephens B.B., Eldering A., Crisp D., Schimel D., Nassar R., O’Dell Ch.W., Oda T., Sweeney C., Palmer P.I., Jones D.B.A. The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network // Atmos. Chem. Phys. 2019. V. 19. P. 9797–9831.
  11. Park G.-H., Wanninkhof R., Doney S.C., Takahashi T., Lee K., Feely R.A., Sabine C., Triñanes J., Lima I. Variability of global air–sea CO2 fluxes over the last three decades // Tellus. 2010. V. 62B, N 5. P. 352–368.
  12. URL: https://public.wmo.int/en/resources/bulletin/annual-global-carbon-budget (last access: 25.03.2021).
  13. Wesslander K. The Carbon Dioxide System in the Baltic Sea Surface Waters: Doctoral thesis. University of Gothenburg, Department of Earth Sciences. 2011. 30 p.
  14. Schneider B., Gülzow W., Sadkowiak B., Rehder G. Detecting sinks and sources of CO2 and CH4 by ferry box-based measurements in the Baltic Sea: Three case studies // J. Marine Sys. 2014. V. 140 A. P. 13–25.
  15. Monteiro T., Kerr R., Machado E.d.C. Seasonal variability of net sea-air CO2 fluxes in a coastal region of the northern Antarctic Peninsula // Sci. Rep. 2020. V. 10. P. 14875.
  16. Humborg Ch., Geibel M.C., Sun X., McCrackin M., Mörth C.M., Stranne Ch., Jakobsson M., Gustafsson B., Sokolov A., Norkko A., Norkko J. High emissions of carbon dioxide and methane from the coastal Baltic Sea at the end of a summer heat wave // Front. Mar. Sci. 2019. V. 6. P. 493. DOI: 10.3389/fmars. 2019.00493.
  17. Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited // Limnol. Oceanogr. Methods. 2014. V. 12. P. 351–362.
  18. URL: http://www.bgc-jena.mpg.de/SOCOM/ (last access: 25.03.2021).
  19. Timofeyev Yu., Virolainen Ya., Makarova M., Poberovsky A., Polyakov A., Ionov D., Osipov S., Imhasin H. Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia) // J. Mol. Spectrosc. 2016. V. 323. P. 2–14.
  20. URL: https://en.ilmatieteenlaitos.fi/download-observations (last access: 25.03.2021).
  21. Hersbach H., Bell B., Berrisford P., Biavati G., Horányi A., Muñoz Sabater J., Nicolas J., Peubey C., Radu R., Rozum I., Schepers D., Simmons A., Soci C., Dee D., Thépaut J-N. ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. DOI: 10.24381/cds.adbb2d47.