Vol. 34, issue 05, article # 3

Tanichev A. S., Petrov D. V., Matrosov I. I., Sharybkina K. K. Effect of helium on the Raman spectrum of methane in the range 2500–3300 cm-1. // Optika Atmosfery i Okeana. 2021. V. 34. No. 05. P. 329–333. DOI: 10.15372/AOO20210503 [in Russian].
Copy the reference to clipboard
Abstract:

The peak positions and half-widths of the Q-branch of the ν1 band, as well as the ratios of intensities of the Q-branches of ν3 and 2ν2 bands of methane in a methane–helium mixture are measured at various pressures and concentrations. An empirical model has been developed for estimation of the helium concentration in a methane-bearing medium by measuring these spectral parameters. The error in the He concentration is found to be less than 1% when using the ν1 band half-width. The ways of developing this technique and increasing its accuracy are considered.

Keywords:

methane, helium, Raman spectroscopy, gas analysis

References:

  1. Knebl A., Yan D., Popp J., Frosch T. Fiber enhanced Raman gas spectroscopy // Trends Anal. Chem. 2018. V. 103. P. 230–238.
  2. Wang P., Chen W., Wan F., Wang J., Hu J. Cavity-enhanced Raman spectroscopy with optical feedback frequency-locking for gas sensing // Opt. Express. 2019. V. 27, N 23. P. 33312–33325.
  3. Schlüter S., Krischke F., Popovska-Leipertz N., Seeger T., Breuer G., Jeleazcov C., Schüttler J., Leipertz A. Demonstration of a signal enhanced fast Raman sensor for multi-species gas analyses at a low pressure range for anesthesia monitoring // J. Raman Spectrosc. 2015. V. 46, N 8. P. 708–715.
  4. Wen C., Huang X., Shen C. Multiple-pass-enhanced multiple-point gas Raman analyzer for industrial process control applications // J. Raman Spectrosc. 2020. V. 51, N 10. P. 2046–2052.
  5. Petrov D.V., Matrosov I.I., Zaripov A.R., Maznoy A.S. Application of Raman spectroscopy for determination of syngas composition // Appl. Spectrosc. 2020. V. 74, N 8. P. 948–953.
  6. Buldakov M.A., Korolev B.V., Matrosov I.I., Petrov D.V., Tikhomirov A.A. Raman gas analyzer for determining the composition of natural gas // J. Appl. Spectrosc. 2013. V. 80, N 1. P. 124–128.
  7. Petrov D.V., Matrosov I.I. Raman Gas Analyzer (RGA): Natural gas measurements // Appl. Spectrosc. 2016. V. 70, N 10. P. 1770–1776.
  8. Gao Y., Dai L.-K., Zhu H.-D., Chen Y.-L., Zhou L. Quantitative analysis of main components of natural gas based on Raman spectroscopy // Chinese J. Anal. Chem. 2019. V. 47, N 1. P. 67–76.
  9. Grynia E., Griffin P.J. Helium in natural gas – occurrence and production // J. Nat. Gas Eng. 2017. V. 1, N 2. P. 163–215.
  10. Pieroni D., Hartmann J.M., Chaussard F., Michaut X., Gabard T., Saint-Loup R., Berger H., Champion J.P. Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman ν1 band // J. Chem. Phys. 2000. V. 112, N 3. P. 1335–1343.
  11. Zhang J., Qiao S., Lu W., Hu Q., Chen S., Liu Y. An equation for determining methane densities in fluid inclusions with Raman shifts // J. Geochem. Explor. 2016. V. 171. P. 20–28.
  12. Lin F., Bodnar R.J., Becker S.P. Experimental determination of the Raman CH4 symmetric stretching (ν1) band position from 1–650 bar and 0.3–22 °C: Application to fluid inclusion studies // Geochim. Cosmochim. Acta. 2007. V. 71, N 15. P. 3746–3756.
  13. Shang L., Chou I.-M., Burruss R.C., Hu R., Bi X. Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure // J. Raman Spectrosc. 2014. V. 45, N 8. P. 696–702.
  14. Seitz J.C., Pasteris J.D., Chou I.-M. Raman spectroscopic characterization of gas mixtures; I. Quantitative composition and pressure determination of CH4, N2 and their mixtures // Am. J. Sci. 1993. V. 293, N 4. P. 297–321.
  15. Herranz J., Stoicheff B.P. High-resolution Raman spectroscopy of gases. Part XVI. The ν3 Raman band of methane // J. Mol. Spectrosc. 1963. V. 10, N 1–6. P. 448–483.
  16. Lolck J.E., Robiette A.G. A theoretical model for the interacting upper states of the ν1, ν3, 2ν2, ν2 + ν4, and 2ν4 bands in methane // J. Mol. Spectrosc. 1981. V. 88, N 1. P. 14–29.
  17. Petrov D.V. Pressure dependence of peak positions, half widths, and peak intensities of methane Raman bands (ν2, 2ν4, ν1, ν3, and 2ν2) // J. Raman Spectrosc. 2017. V. 48, N 11. P. 1426–1431.
  18. Lu W., Chou I.-M., Burruss R.C., Song Y. A unified equation for calculating methane vapor pressures in the CH4–H2O system with measured Raman shifts // Geochim. Cosmochim. Acta. 2007. V. 71, N 16. P. 3969–3978.
  19. Brunsgaard Hansen S., Berg R.W., Stenby E.H. How to determine the pressure of a methane-containing gas mixture by means of two weak Raman bands, ν3 and 2ν2 // J. Raman Spectrosc. 2002. V. 33, N 3. P. 160–164.
  20. Wang M., Lu W., Li L., Qiao S. Pressure and temperature dependence of the Raman peak intensity ratio of asymmetric stretching vibration (ν3) and asymmetric bending overtone (2ν2) of methane // Appl. Spectrosc. 2014. V. 68, N 5. P. 536–540.
  21. Petrov D.V, Matrosov I.I., Tanichev A.S. Intensities of 2ν4 and 2ν2 methane Raman bands as a function of pressure // Proc. SPIE. 2020. V. 11560. P. 115600A.