Vol. 35, issue 01, article # 10

Shikhovtsev A. Yu., Khaikin V. B., Миронов A. P., Kovadlo P. G. Statistical analysis of precipitable water vapor in the North Caucasus and Crimea. // Optika Atmosfery i Okeana. 2022. V. 35. No. 01. P. 67–73. DOI: 10.15372/AOO20220110 [in Russian].
Copy the reference to clipboard
Abstract:

The results of studies of the precipitable water vapor (PWV) at Terskol, Kislovodsk, Nauchny, Sheki, and Hunzakh sites are presented. The comparative analysis of changes in GNSS-derived PWV and PWV estimated from the ERA-5 reanalysis database has been performed. The ERA-5 data make it possible to reveal new sites suitable for millimeter/submillimeter telescopes. In view of the comparatively low total cloud cover, Rutulsky and Agulsky regions are the most promising for building millimeter/submillimeter telescopes in the North Caucasus (Dagestan, mt. Horai (3521 m), Kаtаlnats (3780 m), mt. Karah (2876 m), and mt. Sindaky (2849 m)).

Keywords:

telescope, astroclimate, precipitable water vapor, ERA-5 database, GNSS, GPS, satellite geodesy

References:

1. Marchiori G., Rampini F., Tordi M., Spinola M., Bressan R. Towards the Eurasian Submillimeter Telescope (ESMT): Telescope concept outline and first results // Ground-Based Astronomy in Russia. 21st Century, Proc. All-Rus. Conf., 21–25 September, 2020, Nizhny Arkhyz, Russia. 2020. P. 378–383. DOI: 10. 26119/978-5-6045062-0-2_2020_378.
2. Khaikin V., Lebedev M., Shmagin V., Zinchenko I., Vdovin V., Bubnov G., Edelman V., Yakopov G., Shikhovtsev A., Marchiori G., Tordi M., Duan R., Li D. On the Eurasian SubMillimeter Telescopes Project (ESMT) // 7th All-Rus. Microwave Conf. (RMC), Moscow, Russia, 2020. P. 47–51. DOI: 10.1109/ RMC50626.2020.9312233.
3. Duan R., Khaikin V., Lebedev M., Shmagin V., Yakopov G., Vdovin V., Bubnov G., Zhang X., Niu C., Li D., Zinchenko I. Toward Eurasian SubMillimeter Telescopes: The concept of multicolor SubTHz MKID-Array demo camera MUSICAM and its instrumental Testing // 7th All-Rus. Microwave Conf. (RMC), Moscow, Russia, 2020. P. 41–46. DOI: 10.1109/RMC50626. 2020.9312270.
4. Bubnov G.M., Abashin E.B., Balega Y.Y., Bolshakov O.S., Dryagin S.Y., Dubrovich V.K., Marukhno A.S., Nosov V.I., Vdovin V.F., Zinchenko I.I. Searching for new sites for THz observations in Eurasia // IEEE Trans. Terahertz Sci. Technol. 2015. V. 5, N 1. P. 64–72. DOI: 10.1109/TTHZ.2014.2380473.
5. Bubnov G., Vdovin V., Khaikin V., Tremblin P., Baron P. Analysis of variations in factors of specific absorption of sub-terahertz waves in the earth’s atmosphere // 7th All-Rus. Microwave Conf. (RMC), Moscow, Russia, 2020. P. 229–232. DOI: 10.1109/RMC50626. 2020.9312314.
6. Maud L.T., Tilanus R.P.J., van Kempen T.A., Hogerheijde M.R., Schmalzl M., Yoon I., Contreras Y., To­ribio M.C., Asaki Y., Dent W.R.F., Fomalont E., Matsushita S. Phase correction for ALMA. Investigating water vapour radiometer scaling: The long-baseline science verification data case study // Astron. Astrophys. 2017. V. 605. P. A121. DOI: 10.1051/0004-6361/ 201731197.
7. Lukin V.P., Konyaev P.A., Borzilov A.G., Soin E.L. Adaptivnaya sistema stabilizatsii i formirovaniya izobrazheniya dlya krupnoaperturnogo solnechnogo teleskopa // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 207–217.
8. Botygina N.N., Kolobov D.Yu., Kovadlo P.G., Lukin V.P., Chuprakov S.A., Shihovtsev A.Yu. Dvuhzerkal'naya adaptivnaya sistema korrektsii atmosfernyh pomekh Bol'shogo solnechnogo vakuumnogo teleskopa // Optika atmosf. i okeana. 2018. V. 31, N 7. P. 563–569; Botygina N.N., Kolobov D.Yu., Kovadlo P.G., Lukin V.P., Chuprakov S.A., Shikhovtsev A.Yu. Two-mirror adaptive system for correction of atmospheric disturbances of the large solar vacuum telescope // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 709–717.
9. Botygina N.N., Emaleev O.N., Konyaev P.A., Kopylov E.A., Lukin V.P. Development of elements for an adaptive optics system for solar telescope // J. Appl. Remote Sens. 2018. V. 12, N 4. P. 042403. DOI: 10.1117/1.JRS.12.042403.
10. Xiong Z., Zhang B., Sang J., Sun X., Wei X. Fusing precipitable water vapor data in China at different timescales using an artificial neural network // Remote Sens. 2021. V. 13. P. 1720. DOI: 10.3390/rs13091720.
11. He Q., Shen Z., Wan M., Li L. Precipitable water vapor converted from GNSS-ZTD and ERA5 datasets for the monitoring of tropical cyclones // IEEE Access. 2020. V. 8. P. 87275–87290. DOI: 10.1109/ ACCESS.2020.2991094.
12. Jiao D., Xu N., Yang F. Xu K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China // Sci. Rep. 2021. V. 11. P. 17956. DOI: 10.1038/s41598-021-97432-y.
13. Zhang Y., Cai C., Chen B., Dai W. Consistency evaluation of precipitable water vapor derived from ERA5, ERA-Interim, GNSS, and radiosondes over China // Radio Sci. 2019. V. 54. P. 561–571. DOI: 10.1029/ 2018rs006789.
14. Bevis M., Businger S., Herring T.A., Rocken C., Anthes R.A., Ware R.H. GPS Meteorology: remote sen­sing of atmospheric water vapor using the global positioning system // J. Geophys. Res. 1992. V. 97, N D14. P. 787–801.
15. Antonovich K.M. Ispol'zovanie sputnikovyh radionavigatsionnyh sistem v geodezii. Part 1. M.: Kartgeotsentr, 2005. 334 p.
16. Antonovich K.M. Ispol'zovanie sputnikovyh radionavigatsionnyh sistem v geodezii. Part 3. M.: Kartgeotsentr, 2006. 360 p.
17. URL: http://geoweb.mit.edu/gg/docs/Intro_GG.pdf (data obrashcheniya: 10.10.2021).
18. Kompleks oborudovaniya dlya hraneniya i obrabotki astronomicheskih dannyh GAISH MGU. [Elektronnyj resurs] URL: https://istina.msu.ru/equipment/card/9351754 (last access: 18.10.2021).
19. Boehm J., Werl B., Schuh H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data // J. Geophys. Res. 2006. V. 111, N B2. P. B02406. DOI: 10.1029/2005JB003629.
20. Wang Z., Sun M., Yao X., Zhang L., Zhang H. Spatiotemporal variations of water vapor content and its relationship with meteorological elements in the third pole // Water. 2021. V. 13, N 13. P. 1856. DOI: 10.3390/ w13131856.
21. Ayantobo O.O., Wei J., Kang B., Li T., Wang G. Spatial and temporal characteristics of atmospheric water vapour content and its relationship with precipitation conversion in China during 1980–2016 // Int. J. Climatol. 2021. V. 41, N 3. P. 1747–1766. DOI: 10.1002/joc.6928.
22. Ziv S.Z., Yair Y., Alpert P., Uzan L., Reuveni Y. The diurnal variability of precipitable water vapor derived from GPS tropospheric path delays over the Eastern Mediterranean // Atmos. Res. 2021. V. 249. P. 105307. DOI: 10.1016/j.atmosres.2020.105307.
23. Bordi I., Fraedrich K., Sutera A., Zhu X. Ground-based GPS measurements: time behavior from half-hour to years // Theor. Appl. Climatol. 2014. V. 115. P. 615–625. DOI: 10.1007/s00704-013-0923-z.
24. Lees E., Bousquet O., Roy D., Bellevue J.L.D. Analysis of diurnal to seasonal variability of integrated water vapour in the South Indian Ocean basin using ground-based GNSS and fifth-generation ECMWF reanalysis (ERA5) data // Quant. J. Roy. Meteorol. Soc. 2021. V. 147, N 734. P. 229–248. DOI: 10.1002/qj.3915.
25. Yao Y., Shan L., Zhao Q. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application // Sci. Rep. 2017. V. 7, N 1. P. 12465. DOI: 10.1038/s41598-017-12593-z.
26. Wang J., Dai A., Mears C. Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements // J. Clim. 2016. V. 29, N 14. P. 5205–5222. DOI: 10.1175/JCLI-D-15-0485.1.
27. Ssenyunzi R.C., Oruru B., D`ujanga F.M., Realini E., Barindelli S., Tagliaferro G., von Engeln A., vad de Giesen N. Performance of ERA5 data in retrieving precipitable water vapour over East African tropical region // Adv. Space Res. 2020. V. 65. P. 1877–1893. DOI: 10.1016/j.asr.2020.02.003.
28. Milyukov V., Kopaev A., Zharov V., Mironov A., Myasnikov A., Kaufman M., Duev D. Monitoring crustal deformations in the Northern Caucasus using a high precision long base laser strainmeter and the GPS // J. Geodyn. 2010. V. 49, N 3–4. P. 216–223. DOI: 10.1016/j.jog.2009.10.003.
29. Milyukov V.K., Mironov A.P., Rogozhin E.A., Steblov G.M. Otsenki skorostej sovremennyh dvizhenij Severnogo Kavkaza po GPS nablyudeniyam // Geotektonika. 2015. V. 3. P. 56–65.
30. Milyukov V.K., Mironov A.P., Ovsyuchenko A.N., Rogozhin E.A., Gorbatikov A.V., Drobyshev V.N., Hubaev H.M., Nikolaev A.V. Skorosti sovremennyh gorizontal'nyh dvizhenij v tsentral'nom sektore Bol'shogo Kavkaza po dannym GPS-nablyudenij i ih svyaz' s tektonikoj i glubinnym stroeniem zemnoj kory // Dokl. Akademii nauk. 2018. V. 481, N 3. P. 288–292.
31. Agafonov M.I., Bubnov G.M., Bubukin I.T., Vdovin V.F., Gorbunov R.V., Zinchenko I.I., Lapchenko V.A., Nosov V.I., Pankratov A.L., Rakut' I.V. Rezul'taty nablyudenij astroklimata na Krymskom poluostrove v korotkovolnovoj chasti millimetrovogo diapazona dlin voln // Astrofiz. Byull. 2018. V. 73, N 3. P. 412–417.
32. Lapinov A.V., Lapinova S.A., Petrov L.Yu. On the benefits of the Eastern Pamirs for sub-mm astronomy // Proc. SPIE. 2020. P. 11453. DOI: 10.1117/12. 2560250.