Vol. 35, issue 04, article # 5

Tarasenko V. F., Baksht E. H., Burachenko A. G., Vinogradov N. P. Simulation of the color of high-altitude atmospheric discharges based on repetitively pulsed discharges in air, nitrogen, and argon. // Optika Atmosfery i Okeana. 2022. V. 35. No. 04. P. 279–283. DOI: 10.15372/AOO20220405 [in Russian].
Copy the reference to clipboard
Abstract:

The effect of the electrode material (aluminum and stainless steel) on the generation of mini-jets on the color of a pulse-periodic diffuse discharge in air, nitrogen, and argon is studied. A discharge was generated under generation of runaway electrons in an inhomogeneous electric field. It is found that the material of the electrodes significantly influences the color of the mini jets that originate when bright spots appear on the electrodes. It is confirmed that the use of aluminum electrodes colors the mini jets red, and of iron electrodes, blue. It is shown that the color of the discharge plasma in the mini jet region corresponds to the color of high-altitude atmospheric discharges (red sprites and blue jets) and differs from the color of diffuse discharges in air and nitrogen under the same pressure.

Keywords:

mini jets, diffuse discharge, atmospheric discharges, red sprites, blue jets

References:

1. Sentman D.D., Wescott E.M. Red sprites and blue jets: Thunderstorm-excited optical emissions in the stratosphere, mesosphere, and ionosphere // Phys. Plasmas. 1995. V. 2, N 6. P. 2514–2522. DOI: 10.1063/1.871213.
2. Pasko V.P., Inan U.S., Bell T.F., Taranenko Y.N. Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere // J. Geophys. Res. 1997. V. 102. P. 4529–4561. DOI: 10.1029/96JA03528.
3. Adachi T., Fukunishi H., Takahashi Y., Sato M. Roles of the EMP and QE field in the generation of columniform sprites // Geophys. Res. Lett. 2004. V. 31. P. L04107. DOI: 10.1029/2003GL019081.
4. Ebert U., Sentman D.D. Streamers, sprites, leaders, lightning: From micro-to macroscales // J. Phys. D: Appl. Phys. 2008. V. 41, N 23. P. 230301. DOI: 10.1088/ 0022-3727/41/23/230301.
5. Raizer Y.P., Milikh G.M., Shneider M.N. Streamer and leader-like processes in the upper atmosphere: Models of red sprites and blue jets // J. Geophys. Res.: Space Phys. 2010. V. 115. P. A00E42. DOI: 10.1029/ 2009JA014645.
6. Gordillo-Vázquez F.J., Luque A., Simek M. Spectrum of sprite halos // J. Geophys. Res.: Space Phys. 2011. V. 116, N A9. P. A093919. DOI: 10.1029/2011JA016652.
7. Yang J., Qie X.S., Feng G.L. Characteristics of one sprite-producing summer thunderstorm // Atmos. Res. 2013. V. 127. P. 90–115. DOI: 10.1016/j.atmosres. 2011.08.001.
8. Robledo-Martinez A., Palacios G., Vera A., Sobral H.M. Modelling sprites and blue jets in the lab through the discharge of a dielectric // Proc. 31st ICPIG Conf. 2013. P. 1–4.
9. 
Huang A., Lu G., Yue J., Lyons W., Lucena F., Lyu F., Cummer S.A., Zhang W., Xu L., Xue X., Xu S. Observations of red sprites above hurricane Matthew // Geophys. Res. Lett. 2018. V. 45, N 23. P. 13–158. DOI: 10.1029/2018GL079576.
10. Chanrion O., Neubert T., Mogensen A., Yair Y., Stendel M., Singh R., Siingh D. Profuse activity of blue electrical discharges at the tops of thunderstorms // Geophys. Res. Lett. 2017. V. 44. P. 496–503. DOI: 10.1002/2016GL071311.
11. 
URL: https://youtu.be/4VR3yBlKsFM.
12. Donchenko V.A., Kabanov M.V., Kaul' B.V., Nagorskij P.M., Samohvalov I.V. Elektroopticheskie yavleniya v atmosfere. Tomsk: Izd-vo NTL, 2015. 316 p.
13. 
Nnadih S., Kosch M., Mlynarczyk J. Estimating the electron energy and the strength of the electric field within sprites using ground-based optical data observed over South African storms // J. Atmos. Sol.-Terr. Phys. 2021. P. 105760. DOI: 10.1016/j.jastp.2021.105760.
14. Heumesser M., Chanrion O., Neubert T., Christian H.J., Dimitriadou K., Gordillo-Vazquez F.J., Luque A., Pérez-Invernón F.J., Blakeslee R.J., Østgaard N., Reglero V. Spectral observations of optical emissions associated with terrestrial gamma-ray flashes // Geophys. Res. Lett. 2021. V. 48, N 4. P. 2020GL090700. DOI: 10.1029/2020GL090700.
15. 
Sosnin E.A., Babaeva N.Yu., Kozhevnikov V.Yu., Kozyrev A.V., Najdis G.V., Panarin V.A., Skakun V.S., Tarasenko V.F. Modelirovanie tranzientnyh svetovyh yavlenij srednej atmosfery Zemli c pomoshch'yu apokampicheskogo razryada // Uspekhi fiz. nauk. 2021. V. 191. N 2. P. 199–219.
16. URL: https://uib.no/en/rg/space/56207/asim-research.
17. Siingh D., Singh R.P., Kumar S., Dharmaraj T., Singh A.K., Patil M.N., Singh Sh. Lightning and middle atmospheric discharges in the atmosphere // J. Atmos. Sol.-Terr. Phys. 2015. V. 134. P. 78–101. DOI: 10.1016/j.jastp.2015.10.001.
18. Tarasenko V.F., Beloplotov D.V., Lomaev M.I., Sorokin D.A. O nablyudenii v laboratornyh razryadah, initsiiruemyh puchkom ubegayushchih elektronov, mini-sprajtov i golubyh mini-struj // Optika atmosf. i okeana. 2014. V. 27, N 11. P. 1017–1019; Tarasenko V.F., Beloplotov D.V., Lomaev M.I., Sorokin D.A. Laboratory observation of mini sprites and blue jets in discharges initiated by runaway electrons // Opt. Atmos. Ocean. 2014. V. 27, N 11. P. 1017–1019.
19. 
Tarasenko V.F., Beloplotov D.V., Lomaev M.I. Colored diffuse mini jets in runaway electrons preionized diffuse discharges // IEEE Trans. Plasma Sci. 2016. V. 44, N 4. P. 386–392. DOI: 10.1109/TPS. 2016.2528581.
20. Baksht E.H., Burachenko A.G., Erofeev M.V., Tarasenko V.F. Generatsiya sverhkorotkogo lavinnogo elektronnogo puchka i rentgenovskogo izlucheniya v impul'sno-periodicheskom rezhime // Fizika plazmy. 2014. V. 40, N 5. P. 480–488.
21. Tarasenko V. Runaway electrons in diffuse gas discharges // Plasma Sources Sci. Technol. 2020. V. 29, N 3. P. 034001. DOI: 10.1088/1361-6595/ab5c57.
22. Plane J.M., Flynn G.J., Määttänen A., Moores J.E., Poppe A.R., Carrillo-Sanchez J.D., Listowski C. Impacts of cosmic dust on planetary atmospheres and surfaces // Space Sci. Rev. 2018. V. 214, N 23. P. 1–42. DOI: 10.1007/s11214-017-0458-1.
23. URL: https://spaceweathergallery.com/indiv_upload.php ?upload _id=136395.
24. Tarasenko V.F., Kuznetsov V.S., Panarin V.A., Skakun V.S., Sosnin E.A. Whether and how the vapors of Al, Cu, Fe, and W influence the dynamics of apokamps // J. Phys.: Conf. Ser. 2020. V. 1499, N 1. P. 012051. DOI: 10.1088/1742-6596/1499/1/012051.