Vol. 35, issue 05, article # 12

Gerasimov V. V. Errors of pure rotational Raman lidar absolute calibration due to collisional line broadening. // Optika Atmosfery i Okeana. 2022. V. 35. No. 05. P. 420–426. DOI: 10.15372/AOO20220512 [in Russian].
Copy the reference to clipboard
Abstract:

The effect of collisional line broadening on the accuracy of tropospheric (0–11 km) temperature measurements with pure rotational Raman (PPR) lidars at their absolute calibration by spectroscopic parameters was estimated via numerical simulation. The simulation was performed for five sets of spectral filters (SF) with different passbands in a lidar spectral selection unit and an outgoing laser signal wavelength of 355 nm. It is shown that the unavoidable absolute calibration error can reach values from 0.14 to 0.44 K (depending on the SF set) when ignoring the N2 and O2 PRR line broadening. The line broadening can be neglected if only one PRR line is extracted in each of the two lidar channels (for example, using a Fabry–Perot interferometer).

Keywords:

Raman scattering, lidar, spectral line broadening, lidar calibration, tropospheric temperature

References:

  1. Behrendt A. Temperature Measurements with Lidar // LIDAR: Range-resolved optical remote sensing of the atmosphere. New York: Springer, 2005. P. 273–306.
  2. Penney C.M., Peters R.L.St., Lapp M. Absolute rotational Raman cross sections for N2, O2, and CO2 // J. Opt. Soc. Amer. 1974. V. 64, N 5. P. 712–716.
  3. Cooney J.A. Measurement of atmospheric temperature profiles by Raman backscatter // J. Appl. Meteorol. 1972. V. 11, N 1. P. 108–112.
  4. Arshinov Yu.F., Bobrovnikov S.M., Zuev V.E., Mitev V.M. Atmospheric temperature measurements using a pure rotational Raman lidar // Appl. Opt. 1983. V. 22, N 19. P. 2984–2990.
  5. Liu F., Wang R, Yi F., Huang W., Ban C., Pan W., Wang Z., Hu H. Pure rotational Raman lidar for full-day troposphere temperature measurement at Zhongshan Station (69.37°S, 76.37°E), Antarctica // Opt. Express. 2021. V. 29, N 7. P. 10059–10076.
  6. Behrendt A., Reichardt J. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator // Appl. Opt. 2000. V. 39, N 9. P. 1372–1378.
  7. Di Girolamo P., Marchese R., Whiteman D.N., Demoz B.B. Rotational Raman Lidar measurements of atmospheric temperature in the UV // Geophys. Res. Lett. 2004. V. 31, N 1. P. L01106.
  8. Radlach M., Behrendt A., Wulfmeyer V. Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields // Atmos. Chem. Phys. 2008. V. 8, N 2. P. 159–169.
  9. Hammann E., Behrendt A., Le Mounier F., Wulfmeyer V. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment // Atmos. Chem. Phys. 2015. V. 15, N 5. P. 2867–2881.
  10. Kim D., Cha H., Lee J., Bobronikov S. Pure rotational Raman lidar for atmospheric temperature measurements // J. Korean Phys. Soc. 2001. V. 39, N 5. P. 838–841.
  11. Chen S., Qiu Z., Zhang Y., Chen H., Wang Y. A pure rotational Raman lidar using double-grating monochromator for temperature profile detection // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 2. P. 304–309.
  12. Jia J., Yi F. Atmospheric temperature measurements at altitudes of 5–30 km with a double-grating-based pure rotational Raman lidar // Appl. Opt. 2014. V. 53, N 24. P. 5330–5343.
  13. Zuev V.V., Gerasimov V.V., Pravdin V.L., Pavlinskiy A.V., Nakhtigalova D.P. Tropospheric temperature measurements with the pure rotational Raman lidar technique using nonlinear calibration functions // Atmos. Meas. Tech. 2017. V. 10, N 1. P. 315–332.
  14. Ansmann A., Arshinov Y., Bobrovnikov S.M., Mattis I., Serikov I.B., Wandinger U. Double-grating monochromator for a pure rotational Raman lidar // Proc. SPIE. 1999. V. 3583. P. 491–497.
  15. Bobrovnikov S.M., Nadeev A.I. Sravnenie metodov obrabotki signala pri distantsionnom izmerenii temperatury po chisto vrashchatel'nym spektram kombinatsionnogo rasseyaniya // Optika atmosf. i okeana. 2010. V. 23, N 7. P. 580–584; Bobrovnikov S.M., Nadeev A.I. Comparison of signal processing methods in remote temperature measurements by pure rotational Raman spectra // Atmos. Ocean. Opt. 2010. V. 23, N 6. P. 523–527.
  16. Vaughan G., Wareing D.P., Pepler S.J., Thomas L., Mitev V. Atmospheric temperature measurements made by rotational Raman scattering // Appl. Opt. 1993. V. 32, N 15. P. 2758–2764.
  17. Nedelikovich D., Hauchecorne A., Chanin M.L. Rotational Raman lidar to measure temperature from the ground to 30 km // IEEE Trans. Geosci. Remote Sens. 1993. V. 31, N 1. P. 90–101.
  18. Gerasimov V.V., Zuev V.V. Analytical calibration functions for the pure rotational Raman lidar technique // Opt. Express. 2016. V. 24, N 5. P. 5136–5151.
  19. Gerasimov V.V. Comparative analysis of calibration functions in the pure rotational Raman lidar technique // Appl. Phys. B. 2018. V. 124, N 7. P. 134.
  20. Gerasimov V.V. Vliyanie stolknovitel'nogo ushireniya linij na tochnost' izmereniya temperatury troposfery s pomoshch'yu chisto vrashchatel'nyh Ramanovskih lidarov // Optika atmosf. i okeana. 2020. V. 33, N 1. P. 14–24; Gerasimov V.V. The effect of collisional line broadening on the accuracy of tropospheric temperature measurements using pure rotational Raman lidars // Optika Atmosfery i Okeana. 2020. V. 33, N 1. P. 14–24.
  21. Gerasimov V.V. A simulation comparison of calibration functions for different sets of spectral filter passbands in the traditional pure rotational Raman lidar technique // Appl. Phys. B. 2020. V. 126, N 11. P. 184.
  22. Li Y.J., Song S.L., Li F.Q., Cheng X.W., Chen Z.W., Liu L.M., Yang Y., Gong S.S. High-precision measurements of lower atmospheric temperature based on pure rotational Raman lidar // Chinese J. Geophys. 2015. V. 58, N 4. P. 313–324.
  23. Wu D., Wang Z., Wechsler P., Mahon N., Deng M., Glover B., Burkhart M., Kuestner W., Heesen B. Airborne compact rotational Raman lidar for temperature measurement // Opt. Express. 2016. V. 24, N 18. P. A1210–A1223.
  24. Li Y.J., Lin X., Song S.L., Yang Y., Cheng X.W., Chen Z.W., Liu L.M., Xia Y., Xiong J., Gong S.S., Li F.Q. A Combined rotational Raman–Rayleigh lidar for atmospheric temperature measurements over 5–80 km with self-calibration // IEEE Trans. Geosci. Remote. Sens. 2016. V. 54, N 12. P. 7055–7065.
  25. Li Y.J., Lin X., Yang Y., Xia Y., Xiong J., Song S.L., Liu L.M., Chen Z.W., Cheng X.W., Li F.Q. Temperature characteristics at altitudes of 5–80 km with a self-calibrated Rayleigh–rotational Raman lidar: A summer case study // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 188. P. 94–102.
  26. Behrendt A., Nakamura T., Tsuda T. Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere // Appl. Opt. 2004. V. 43, N 14. P. 2930–2939.
  27. He J., Chen S., Zhang Y., Guo P., Chen H. A novel calibration method for pure rotational Raman lidar temperature profiling // J. Geophys. Res.: Atmos. 2018. V. 123, N 19. P. 10925–10934.
  28. Su J., McCormick M.P., Wu Y.H., Lee III R.B., Lei L.Q., Liu Z.Y., Leavor K.R. Cloud temperature measurement using rotational Raman lidar // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 125. P. 45–50.
  29. Weng M., Yi F., Liu F., Zhang Y., Pan X. Single-line-extracted pure rotational Raman lidar to measure atmospheric temperature and aerosol profiles // Opt. Express. 2018. V. 26, N 21. P. 27555–27571.
  30. Arshinov Yu., Bobrovnikov S. Use of a Fabry–Perot interferometer to isolate pure rotational Raman spectra of diatomic molecules // Appl. Opt. 1999. V. 38, N 21. P. 4635–4638.
  31. Arshinov Yu., Bobrovnikov S., Serikov I., Ansmann A., Wandinger U., Althausen D., Mattis I., Müller D. Daytime operation of a pure rotational Raman lidar by use of a Fabry–Perot interferometer // Appl. Opt. 2005. V. 44, N 17. P. 3593–3603.
  32. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539.pdf (last access: 25.02.2022).