Vol. 35, issue 05, article # 9

Tsydenov B. O. Wind effects on the distribution of plankton and nutrients during the autumn cooling of Lake Baikal. // Optika Atmosfery i Okeana. 2022. V. 35. No. 05. P. 402–407. DOI: 10.15372/AOO20220509 [in Russian].
Copy the reference to clipboard
Abstract:

The results of mathematical simulation of biogeochemical processes during the autumn cooling of the lake are presented. The influence of wind on the distribution of phyto- and zooplankton, nitrate, ammonium, and phosphate nutrients is studied during the existence of the autumnal thermal bar in Barguzin Bay of Lake Baikal. Numerical simulations show the autumnal thermal bar in combination with the effect of western winds, which act opposite to the thermal front direction, to significantly slow down the transport of plankton biomass toward the central part of the bay.

Keywords:

wind, autumnal thermal bar, numerical simulation, plankton, phosphate, Lake Baikal

Figures:
References:

1. Tsydenov B.O. Vliyanie teplovyh potokov na raspredelenie fitoplanktona v presnovodnom ozere // Optika atmosf. i okeana. 2021. V. 34, N 8. P. 591–598; Tsydenov B.O. Effects of heat fluxes on the phytoplankton distribution in a freshwater lake // Atmos. Ocean. Opt. 2021. V. 34, N 6. P. 603–610.
2. Tihomirov A.I. Termika krupnyh ozer. L.: Nauka, 1982. 232 p.
3. Blohina N.S., Pokazeev K.V. Unikal'noe prirodnoe yavlenie – termobar // Zemlya i Vselennaya. 2015. N 6. P. 78–88.
4. Holland P.R., Kay A. A review of the physics and ecological implications of the thermal bar circulation // Limnologica. 2003. V. 33, N 3. P. 153–162.
5. Moll R., Brahce M. Seasonal and spatial-distribution of bacteria, chlorophyll, and nutrients in nearshore Lake Michigan // J. Great Lakes Res. 1986. V. 12, N 1. P. 52–62.
6. Goldman C.R., Elser J.J., Richards R.C., Reuter J.E., Priscu J.C., Levin A.L. Thermal stratification, nutrient dynamics, and phytoplankton productivity during the onset of spring phytoplankton growth in Lake Baikal, Russia // Hydrobiologia. 1996. V. 331, N 1–3. P. 9–24.
7. Ullman D., Brown J., Cornillon P., Mavor T. Surface temperature fronts in the Great Lakes // J. Great Lakes Res. 1998. V. 24, N 4. P. 753–775.
8. Shimaraev M.N. Elementy teplovogo rezhima ozera Bajkal / pod red. A.N. Afanas'eva. Novosibirsk: Nauka, 1977. 149 p.
9. Sherstyankin P.P., Ivanov V.G., Kuimova L.N., Sinyukovich V.N. Formirovanie vod Selenginskogo melkovod'ya s uchetom sezonnogo hoda rechnogo stoka, termicheskoj konvektsii i termobarov // Vod. resursy. 2007. V. 34, N 4. P. 439–445.
10. Likhoshway Y.V., Kuzmina A.Ye., Potyemkina T.G., Potyemkin V.L., Shimaraev M.N. The distribution of diatoms near a thermal bar in Lake Baikal // J. Great Lakes Res. 1996. V. 22, N 1. P. 5–14.
11. Weiss R.F., Carmack E.C., Koropalov V.M. Deep-water renewal and biological production in Lake Baikal // Nature. 1991. V. 349, N 6311. P. 665–669.
12. Shimaraev M., Granin N., Zhdanov A. Deep ventilation of Lake Baikal waters due to spring thermal bars // Limnol. Oceanogr. 1993. V. 38, N 5. P. 1068–1072.
13. Hohmann R., Kipfer R., Peeters F., Piepke G., Imboden D.M., Shimaraev M.N. Processes of deep-water renewal in Lake Baikal // Limnol. Oceanogr. 1997. V. 42, N 5. P. 841–855.
14. Blokhina N.S. The influence of wind on the development of a thermal bar and currents in a small reservoir during melting of its ice cover // Moscow Univ. Phys. Bull. 2013. V. 68, N 4. P. 324–329.
15. Malm J. Spring circulation associated with the thermal bar in large temperate lakes // Nordic Hydrology. 1995. V. 26, N 4–5. P. 331–358.
16. Scavia D., Bennett J.R. Spring transition period in Lake Ontario – a numerical study of the causes of the large biological and chemical gradients // Can. J. Fish. Aquat. Sci. 1980. V. 37, N 5. P. 823–833.
17. Tsydenov B.O. Dinamika osennego termobara pri differentsirovannoj vetrovoj nagruzke // Vestn. Mosk. un-ta. Ser. 3: Fiz. Astronomiya. 2022. N 1. P. 105–110.
18. Tsydenov B.O. Numerical modeling of the autumnal thermal bar // J. Mar. Syst. 2018. V. 179. P. 1–9.
19. Vereshchagin G.Yu. O nekotoryh problemah, svyazannyh s izucheniem Bajkala // Priroda. 1939. N 12. P. 33 –43.
20. Fasham M.J.R., Ducklow H.W., McKelvie S.M. A nitrogen-based model of plankton dynamics in the oceanic mixed layer // J. Mar. Res. 1990. V. 48, N 3. P. 591–639.
21. Fennel K., Wilkin J., Levin J., Moisan J., O’Reilly J., Haidvogel D. Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget // Global Biogeochem. Cycl. 2006. V. 20, N 3. GB3007.
22. Hofmann E., Druon J.-N., Fennel K., Friedrichs M., Haidvogel D., Lee C., Mannino A., McClain C., Najjar R., O’Reilly J., Pollard D., Previdi M., Seitzinger S., Siewert J., Signorini S., Wilkin J. Eastern US continental shelf carbon budget: Integrating models, data assimilation, and analysis // Oceanography. 2008. V. 21, N 1. P. 86–104.
23. Gan J., Lu Z., Cheung A., Dai M., Liang L., Harrison P.J., Zhao X. Assessing ecosystem response to phosphorus and nitrogen limitation in the Pearl River plume using the Regional Ocean Modeling System (ROMS) // J. Geophys. Res. C: Oceans. 2014. V. 119, N 12. P. 8858–8877.
24. Holland P.R., Kay A., Botte V. A numerical study of the dynamics of the riverine thermal bar in a deep lake // J. Environ. Fluid Mech. 2001. V. 1, N 3. P. 311–332.
25. Goudsmit G.-H., Burchard H., Peeters F., Wüest A. Application of k–e turbulence models to enclosed basin: The role of internal seiches // J. Geophys. Res. 2002. V. 107, N 12. P. 23-1–13.
26. URL: http://geol.irk.ru/baikal/law/mlawecmon/ mlawcosmmon (last access: 20.10.2021).
27. Shimaraev M.N., Verbolov V.I., Granin N.G., Sherstyankin P.P. Physical Limnology of Lake Baikal: A Review. Irkutsk–Okayama: Bicer, 1994. 81 p.
28. Votintsev K.K. Gidrohimiya // Problemy Bajkala / pod red. G.I. Galazij, K.K. Votintsev. Novosibirsk: Nauka, 1978. P. 124–146.
29. Tsydenov B.O. Simulating phytoplankton growth during the spring thermal bar in a deep lake // J. Mar. Syst. 2019. N 195. P. 38–49.
30. Evstafyev V.K., Bondarenko N.A. An intriguing enigma of Lake Baikal // Biol. Rhythm Res. 2007. V. 38, N 2. P. 107–117.
31. Satoh Y., Katano T., Satoh T., Mitamura O., Anbutsu K., Nakano S.-I., Ueno H., Kihira M., Drucker V., Tanaka Y., Mimura T., Watanabe Y., Sugiyama M. Nutrient limitation of the primary production of phytoplankton in Lake Baikal // Limnology. 2006. V. 7, N 3. P. 225–229.
32. Katano T., Nakano S.-I., Ueno H., Mitamura O., Anbutsu K., Kihira M., Satoh Y., Satoh T., Drucker V.V., Tanaka Y., Akagashi Y., Sugiyama M. Abundance and composition of the summer phytoplankton community along a transect from the Barguzin River to the central basin of Lake Baikal // Limnology. 2008. V. 9, N 3. P. 243–250.
33. Holland P.R., Kay A., Botte V. Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake // J. Mar. Syst. 2003. V. 43, N 1–2. P. 61–81.
34. Csanady G.T. Spring thermocline behavior in Lake Ontario during IFYGL // J. Phys. Oceanogr. 1974. N 4. P. 425–445.
35. Tsydenov B.O. Modeling biogeochemical processes in a freshwater lake during the spring thermal bar // Ecol. Model. 2022. V. 465. 109877.
36. Parfenova V.V., Shimaraev M.N., Kostornova T.Y., Domysheva V.M., Levin L.A., Dryukker V.V., Zhdanov A.A., Gnatovskii R.Yu., Tsekhanovskii V.V., Logacheva N.F. On the vertical distribution of microorganisms in lake Baikal during spring deep-water renewal // Microbiology. 2000. V. 69, N 3. P. 433–440.