Vol. 35, issue 07, article # 10

Tatur V. V., Tikhomirov A. A. Selective absorption effect of impurity gases on measurements in atomic absorption mercury analyzers based on the Zeeman effect. // Optika Atmosfery i Okeana. 2022. V. 35. No. 07. P. 594–598. DOI: 10.1134/S1024856023010190 [in Russian].
Copy the reference to clipboard
Abstract:

The effect of impurity gases (benzene and toluene) on measurements of the mercury concentration in natural gas is estimated. The measurements were carried out with analyzers with mercury capillary lamps (MCL) as a radiation source. The MCLs were placed in the magnetic field to produce the longitudinal or transverse Zeeman effects. It is shown that in the transverse Zeeman effect, when the triplet of π-, σ+-, and δ--components is emitted, the effect of impurity gases on the measurement results of mercury concentration in natural gas several time decreases. The minimum allowable concentration of benzene and toluene (up to 10 mg/m3) in natural gas is experimentally determined, which does not affect the measurement of mercury concentration with an analyzer with a MCL filled with mercury of natural isotopic composition in the transverse Zeeman effect.

Keywords:

mercury vapor analyzer, longitudinal and transverse Zeeman effects, natural gas, benzene, toluene, minimum concentration

References:

1. Machulin L.V., Latyshev A.A. Metodicheskoe obespechenie monitoringa pokazatelej kachestva gaza, transportiruemogo po magistral'nym truboprovodam // Gazovaya promyshlennost'. 2020. N 7. P. 40–50.
2. Volynskij A.B., Arystanbekova S.A., Gorshkova T.A., Gladkov S.Yu. Opredelenie primesej rtuti v prirodnom gaze metodom atomno-absorbtsionnoj spektrometrii // Gazovaya promyshlennost'. 2012. N 11. P. 94–97.
3. Mash'yanov N.R. Pogarev S.E., Ryzhov V.V., Sholupov S.E. Vozmozhnosti atomno-absorbtsionnogo spektrometra RA-915+ s zeemanovskoj korrektsiej dlya opredeleniya rtuti v razlichnyh sredah // Analitika i kontrol'. 2001. V. 5, N 4. P. 375–378.
4. Opredelenie rtuti v prirodnom gaze // Granat. Spb., 2022. URL: http://granat-e.ru/ra-915m+rp-91pg.html (data obrashcheniya: 24.12.2021).
5. Antipov A.B., Genina E.Yu., Kashkan G.V., Mel'nikov N.G. Rtutnyj monitoring // Optika atmosf. i okeana. 1994. V. 7, N 11–12. P. 1630–1635.
6. Antipov A.B., Genina E.Yu. Formirovanie differentsial'nogo signala zeemanovskogo atomno-absorbtsionnogo analizatora // Optika atmosf. i okeana. 1998. V. 11, N 5. P. 500–504.
7. Prilozhenie k svidetel'stvu ob utverzhdenii tipa sredstv izmerenij. Analizatory rtuti modifikatsij РА-915+, РА-915М. M., 2009. 5 p. URL: https:// ktopoverit.ru/prof/opisanie/18795-09.pdf (data obrashcheniya: 20.07.2021).
8. Azbukin A.A., Buldakov M.A., Korolev B.V., Korol'kov V.A., Matrosov I.I., Tihomirov A.A. Portativnyj opticheskij analizator kontsentratsii parov rtuti DOG-05 // PTE. 2006. N 5. P. 142–143.
9. Buldakov M.A., Matrosov I.I., Tihomirov A.A., Korolev B.V. Portativnyj opticheskij analizator parov rtuti v atmosfernom vozduhe DOG-05 // Bezopasnost' v tekhnosfere. 2011. N 1. P. 11–15.
10. Frish S.E. Opticheskie spektry atomov. M.: GIFML, 1963. 640 p.
11. Abramochkin A.I., Tatur V.V., Tihomirov A.A. Issledovanie p- i s-komponent izlucheniya rtutnoj kapillyarnoj lampy v poperechnom effekte Zeemana // Izv. vuzov. Fizika. 2016. V. 59, N 9. P. 14–18.
12. Vyazovetskij Yu.V. Poluchenie izotopa 204Hg fotohimicheskim metodom // ZhTF. 2012. V. 82, N 5. P. 24–28.
13. Dawes A., Pascual N., Hoffmann S.V., Jones N.C., Mason N.J. Vacuum ultraviolet photoabsorption spectroscopy of crystalline and amorphous benzene // Phys. Chem. Chem. Phys. 2017. V. 19, N 40. P. 27544–27555. DOI: 10.1039/c7cp05319c.
14. Gazoanalizator dlya izmereniya rtuti v gaze: Pat. 2493553. Russia, MPK G01N 21/31. Dish R. 2012101704/28; Zayavl. 27.01.2011. Opubl.20.09.2013. Byul. N 26.
15. Koban W., Koch J.D. Hanson R.K., Schulz C. Absorption and fluorescence of toluene vapor at elevated temperatures // Phys. Chem. Chem. Phys. 2004. V. 6, N 11. P. 2940–2945. DOI: 10.1039/b400997e.
16. Khan S., Newport D., Le Calve S. Development of a toluene detector based on deep UV absorption spectrophotometry using glass and aluminum capillary tube gas cell with a LED source // Micromachines. 2019. V. 10, N 3. P. 193. DOI: 10.3390/mi10030193.
17. NIST Chemistry WebBook. URL: http://webbook. nist.gov/chemisty (last access: 20.01.2022).
18. Tatur V.V., Tihomirov A.A., Abramochkin A.I., Korolev B.V., Mutnitskij N.G. Analizator parov rtuti v atmosfernom vozduhe na osnove rtutnoj kapillyarnoj lampy s estestvennym izotopnym sostavom // Optika atmosf. i okeana. 2019. V. 32, N 7. P. 576–580; Tatur V.V., Tikhomirov A.A., Abramochkin A.I., Korolev B.V., Mutnitskii N.G. Analyzer of mercury vapors in atmospheric air based on a mercury capillary lamp with natural isotope composition // Atmos Ocean. Opt. 2019. V. 32, N 6. P. 701–705. DOI: 10.1134/S1024856019060174.