Vol. 35, issue 09, article # 10

Razenkov I. A. Engineering and technical solutions when designing a turbulent lidar. // Optika Atmosfery i Okeana. 2022. V. 35. No. 09. P. 766–776. DOI: 10.15372/AOO20220910 [in Russian].
Copy the reference to clipboard
Abstract:

The design characteristics of the turbulent lidar affecting its thermo-mechanical stability are determined. A comparative description of two different designs is given, where different approaches are implemented to the selection of transceiving optics and receiver detectors and organization of the temperature control system for stabilizing the lidar optical bench. A simulation scheme of a lidar transceiver is suggested, including the calculation of the displacements of optical elements relative to the base points on the optical bench and the ray tracing from the laser into the atmosphere and back. The influence of the temperature gradient between the opposite sides of the optical bench on the operation of the receiving channels is considered. The results of the experimental study of lidars for resistance to temperature changes are presented. Recommendations for improving the design of a turbulent lidar are formulated.

Keywords:

turbulent lidar, atmospheric turbulence, backscatter enhancement effect, thermo-mechanical stability, temperature deformation

References:

  1. Vinogradov A.G., Gurvich A.S., Kashkarov S.S., Kravtsov Yu.A., Tatarskij V.I. Zakonomernost' uvelicheniya obratnogo rasseyaniya voln. Svidetel'stvo na otkrytie N 359. Prioritet otkrytiya: 25 august 1972 year v chasti teoreticheskogo obosnovaniya i 12 august 1976 year v chasti eksperimental'nogo dokazatel'stva zakonomernosti. Gosudarstvennyj reestr otkrytij SSSR // Byull. izobretenij. 1989. N 21.
  2. Kravtsov Yu.A., Saichev A.I. Effekty dvukratnogo prohozhdeniya voln v sluchajno neodnorodnyh sredah. // Uspekhi fizicheskih nauk. 1982. V. 137, iss. 3. P. 501–527.
  3. Ustrojstvo dlya registratsii usileniya obratnogo rasseyaniya v atmosfere: Pat. 153460. MKP, G01S 17/95. Razenkov I.A., Banah V.A., Nadeev A.I.; Institut optiki atmosfery im. V.E. Zueva SO RAN. N 2014149951/28; Zayavl. 10.12.2014; Opubl. 20.07.2015. Byul. N 20.
  4. Rаzenkov I.А. Turbulentnyj lidar. I. Konstruktsiya // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48; Rаzenkov I.А. Turbulent lidar: I – Design // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
  5. Rаzenkov I.А. Evristicheskij podhod k opredeleniyu strukturnoj harakteristiki pokazatelya prelomleniya po dannym turbulentnogo lidara // Optika atmosf. i okeana. 2022. V. 35, N 3. P. 195–204.
  6. Rаzenkov I.А. Perspektivy primeneniya turbulentnogo UOR-lidara dlya issledovaniya pogranichnogo sloya atmosfery. // Optika atmosf. i okeana. 2021. V. 34, N 1. P. 26–35. DOI: 10.15372/AOO20210104.
  7. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere / Claus Weitkamp (ed.). Berlin: Springer, 2005. 443 p.
  8. Kovalev V.A., Eichinger W.E. Elastic Lidar: Theory, Practice, and Analysis Methods. USA: Wiley-IEEE, 2004. 616 p.
  9. Savinyh V.P., Solomatin V.A. Optiko-elektronnyj sistemy distantsionnogo zondirovaniya. M.: Mashinostroenie, 2014. 432 p.
  10. McManamon P. Field Guide to Lidar. USA: SPIE Press Book, 2015. V. FG36. 152 p.
  11. Boli B., Uejner Dzh. Teoriya temperaturnyh napryazhenij. M.: Mir, 1964. 520 p.
  12. Klimakova L.A., Polovyj A.O. Vozmozhnosti ispol'zovaniya ugleplastikov v termostabil'nyh strukturah pretsizionnyh konstruktsij // Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie. 2008. N 2. P. 22–28.
  13. Razenkov I.A., Banakh V.A., Gorgeev E.V. Lidar “BSE-4” for the atmospheric turbulence measurements // Proc. SPIE. N 10833. 2018. DOI: 10.1117/12.2505183.
  14. Razenkov I.A., Nadeev A.I., Zajtsev N.G., Gordeev E.V. Ul'trafioletovyj turbulentnyj lidar UOR-5 // Optika atmosf. i okeana. 2020. V. 33, N 4. P. 289–297; Razenkov I.A., Nadeev A.I., Zaitsev N.G., Gordeev E.V. Turbulent UV Lidar BSE-5 // Atmos. Ocean. Opt. 2020. V. 33, N 4. P. 406–414.
  15. Ustrojstvo dlya registratsii usileniya obratnogo rasseyaniya v atmosfere. Pat. 165087. Russia, MKP, G01S 17/95. Razenkov I.A., Banah V.A.; Institut optiki atmosfery im. V.E. Zueva SO RAN. N 2016117721/28; Zayavl. 04.05.2016; Opubl. 10.10.2016. Bul. N 28.
  16. Aerozol'nyj turbulentnyj lidar. Pat. 208927. Russia, MKP, G01S 17/95. Razenkov I.A., Nadeev A.I.; Institut optiki atmosfery im. V.E. Zueva SO RAN. N 2021130316; Zayavl. 19.10.2021; Opubl. 24.01.2022. Bul. № 3.
  17. Newport. USA, 2022. URL: http://www.newport.com (last access: 23/03/2022).
  18. Zemax: An Ansys Company. USA, 2022. URL: http:// www.zemax.com (last access: 23/03/2022).
  19. Thorlabs. USA, 2022. URL: http://www.thorlabs.com (last access: 23/03/2022).