Vol. 35, issue 10, article # 11

Bol'basova L. A., Lukin V. P. Possibilities of adaptive optical correction of the global wavefront tilt using signals from traditional and polychromatic laser guide stars. // Optika Atmosfery i Okeana. 2022. V. 35. No. 10. P. 871–877. DOI: 10.15372/AOO20221011 [in Russian].
Copy the reference to clipboard
Abstract:

The work is devoted to the application of laser guide stars (LGS) technology for the adaptive optics system of a ground-based telescope. The results of the study of the possibilities of correcting the global wavefront tilt with the use of LGS are presented. To approaches are compared: polychromatic LGS, where the correction signal is a difference random refraction due to the atmosphere for different optical radiation wavelengths, and traditional monochromatic LGS, where an LGS is considered as a point source with a random center. The calculations were performed in the approximation of the Huygens–Fresnel method. It is shown that in this approximation, the signal from a monostatic monochromatic LGS used to correct the global wavefront tilt is comparable to the signal from a polychromatic LGS. Seasonal changes in the concentration and altitude of the mesospheric sodium layer, which determines the characteristics of sodium LGS, are estimated for Russian observatories.

Keywords:

laser guide star, adaptive optics, atmospheric turbulence

References:

  1. Ragazzoni R. Absolute tip-tilt determination with laser beacons // Astron. Astrophys. 1996. V. 305. P. L13–L16.
  2. Lukin V.P. Lazernye opornye zvezdy i problema izmereniya naklona volnovogo fronta // Optika atmosf. i okeana. 1996. V. 9, N 11. P. 1433–1442.
  3. Lukin V.P., Fortes B.V. Adaptivnoe formirovanie puchkov i izobrazhenij v atmosfere. Novosibirsk: Izd-vo SO RAN, 1999. 214 p.
  4. Foy R., Migus A., Biraben F., Grynberg G., McCullough P.R., Tallon M. The polychromatic artificial sodium star: A new concept for correcting the atmospheric tilt // Astron. Astrophys. 1995. V. 111. P. 569–578.
  5. Foy R., Tallon M., Tallon-Bosc I., Thiébaut E., Vaillant J., Foy F.-C., Robert D., Friedman H., Biraben F., Grynberg G., Gex J.-P., Mens A., Migus A., Weulersse J.-M., Butler D.J. Photometric observations of a polychromatic laser guide star // J. Opt. Soc. Am. A. 2000. V. 17. P. 2236–2242.
  6. Pique J.P., Moldova I.C., Fesquet V. Concept for polychromatic laser guide stars: One-photon excitation of the 4P3∕2 level of a sodium atom // J. Opt. Soc. Am. A. 2006. V. 23, N 11. P. 2817–2828.
  7. Qing-Shuang Zong, Chuan Guo, Qi Bian, Chang Xu, Jun-Wei Zuo, Lin Han, Yu Shen, Zhi-Min Wang, Nan Zong, Yong Bo, Da-Fu Cui, Qin-Jun Peng, Zu-Yan Xu. Watt level laser source for a polychromatic laser guide stars: Double resonant fluorescence from 3S1/2–3P3/2–3D5/2 transition of sodium atoms // Opt. Express. 2019. V. 27. P. 12255–12263.
  8. Huo X., Qi Y., Zhang Y., Chen B., Bai Z., Ding J., Wang Y., Lu Z. Research development of 589 nm laser for sodium laser guide stars // Opt. Laser. Engin. 2020. V. 134. P. 106207–14.
  9. Albert J.E., Budker D., Chance K., Gordon I.E., Bustos F.P., Pospelov M., Rochester S.M., Sadeghpour H.R. A precise photometric ratio via laser excitation of the sodium layer – I. One-photon excitation using 342.78 nm light // Mon. Not. R. Astron. Soc. 2021. V. 508, N 3. P. 4399–4411.
  10. Albert J.E., Budker D., Chance K., Gordon I.E., Bustos F.P., Pospelov M., Rochester S.M., Sadeghpour H.R. A precise photometric ratio via laser excitation of the sodium layer – II. Two-photon excitation using lasers detuned from 589.16 and 819.71 nm resonances // Mon. Not. R. Astron. Soc. 2021. V. 508, N 3. P. 4412–4428.
  11. Bolbasova L.A., Lukin V.P. Issledovaniya atmosfery dlya zadach adaptivnoj optiki // Optika atmosf. i okeana. 2021. V. 34, N 4. P. 254–271; Bolbasova L.A., Lukin V.P. Atmospheric research for adaptive optics // Atmos. Ocean. Opt. 2022. V. 35, N 3. P. 288–302.
  12. Fussen D., Vanhellemont F., Tétard C., Mateshvili N., Dekemper E., Loodts N., Bingen C., Kyrölä E., Tamminen J., Sofieva V., Hauchecorne A., Dalaudier F., Bertaux J., Barrot G., Blanot L., d'Andon O.F., Fehr T., Saavedra L., Yuan T., She C. A global climatology of the mesospheric sodium layer from GOMOS data during the 2002–2008 period // Atmos. Chem. Phys. 2010. V. 10, N 19. P. 9225–9236.
  13. Langowski M.P., von Savigny C., Burrows J.P., Fussen D., Dawkins E.C.M., Feng W., Plane J.M.C., Marsh D.R. Comparison of global datasets of sodium densities in the mesosphere and lower thermosphere from GOMOS, SCIAMACHY and OSIRIS measurements and WACCM model simulations from 2008 to 2012 // Atmos. Meas. Tech. 2017. V. 10. P. 2989–3006.
  14. Bolbasova L.A., Lukin V.P. Adaptivnaya korrektsiya atmosfernyh iskazhenij opticheskih izobrazhenij na osnove iskusstvennogo opornogo istochnika. M.: Fizmatlit, 2012. 128 p.
  15. Bolbasova L.A., Lukin V.P. Analiticheskie modeli vysotnoj zavisimosti strukturnoj postoyannoj pokazatelya prelomleniya turbulentnoj atmosfery dlya zadach adaptivnoj optiki // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 918–925.
  16. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevtsov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 277 p.
  17. Bol'basova L.A., Lukin V.P., Nosov V.V. O drozhanii izobrazheniya lazernoj opornoj zvezdy v monostaticheskoj skheme formirovaniya // Opt. i spektroskop. 2009. V. 107, N 5. P. 830–838.
  18. Gjessing D.T. Atmospheric structure deduced from the forward scatter wave propagation experiments // Radio Sci. 1969. N 12. P. 1195–1210.