Vol. 36, issue 05, article # 11

Bobrovnikov S. M., Gorlov E. V., Zharkov V. I., Murashko S. N. Estimation of energy and time parameters of laser radiation for efficient excitation of phosphorus oxide fluorescence. // Optika Atmosfery i Okeana. 2023. V. 36. No. 05. P. 404–409. DOI: 10.15372/AOO20230511 [in Russian].
Copy the reference to clipboard
Abstract:

We present a mathematical model of the process of laser-induced fluorescence of phosphorus oxide (PO) molecules. Based on the model, the dependences of the fluorescence intensity of PO molecules on the energy and time parameters of the exciting laser radiation are derived. It has been established that the dependence of the PO fluorescence signal on the energy density of the exciting radiation has the form of a saturation curve, and the dependence on the pulse duration under real atmospheric conditions has a local maximum. It is shown that the optimal pulse duration decreases with the energy density of the exciting radiation.

Keywords:

organophosphate, laser fragmentation, phosphorus oxide, PO-fragment, laser-induced fluorescence

References:

1. Wu D.D., Singh J.P., Yueh F.Y., Monts D.L. 2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence // Appl. Opt. 1996. V. 35, N 21. P. 3998–4003.
2. Simeonsson J.B., Sausa R.C. A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis // Appl. Spectrosc. Rev. 1996. V. 31, N 1. P. 1–72.
3. Swayambunathan V., Singh G., Sausa R.C. Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials // Appl. Opt. 1999. V. 38, N 30. P. 6447–6454.
4. Daugey N., Shu J., Bar I., Rosenwaks S. Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v = 0–3) // Appl. Spectrosc. 1999. V. 53, N 1. P. 57–64.
5. Shu J., Bar I., Rosenwaks S. Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO // Appl. Opt. 1999. V. 38, N 21. P. 4705–4710
6. Shu J., Bar I., Rosenwaks S. NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates // Appl. Phys. B. 2000. V. 71, N 5. P. 665–672.
7. Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24°C: A unique scheme for remote detection of explosives // J. Appl. Opt. 2001. V. 40, N 36. P. 6677–6681.
8. Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18, N 6. P. 5399–5406.
9. Wynn C.M., Palmacci S., Kunz R.R., Aernecke M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence // Opt. Express. 2011. V. 19, N 19. P. 18671–18677.
10. Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Zharkov V.I., Maksimov E.M., Panchenko Y.N., Sakovich G.V. Lidar detection of explosive vapors in the atmosphere // Russ. Phys. J. 2016. V. 58, N 9. P. 1217–1225.
11. Bisson S.E., Headrick J.M., Reichardt T.A., Farrow R.L., Kulp T.J. A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents // Proc. SPIE. 2011. V. 8018. P. 80180Q-1–7.
12. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Safyanov A.D. Lazerno-indutsirovannaya fluorestsentsiya PO-fotofragmentov organofosfatov // Optika atmosfery i okeana. 2022. V. 35, N 8. P. 613–618; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Safyanov A.D. Laser-induced fluorescence of PO photofragments of organophosphates // Atmos. Ocean. Opt. 2022. V. 35, N 6. P. 639–644.
13. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Otsenka predel'noj chuvstvitel'nosti metoda lazernoj fragmentatsii/lazerno-indutsirovannoj fluorestsentsii pri obnaruzhenii parov nitrosoedinenij v atmosfere // Optika atmosfery i okeana. 2022. V. 35, N 11. P. 948–955.
14. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Eksperimental'noe issledovanie dinamiki protsessa lazernoj fragmentatsii parov nitrobenzola i para-nitrotoluola // Optika atmosfery i okeana. 2023. V. 36, N 1. P. 73–77.
15. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Otsenka effektivnosti lazernogo vozbuzhdeniya molekul oksida fosfora // Optika atmosfery i okeana. 2021. V. 34, N 4. P. 302–311; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Estimation of the efficiency of laser excitation of phosphorus oxide molecules // Atmos. Ocean. Opt. 2021. V. 34, N 4. P. 302–312.
16. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Effektivnost' lazernogo vozbuzhdeniya PO-fotofragmentov organofosfatov // Optika atmosfery i okeana. 2022. V. 35, N 3. P. 175–185; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Efficiency of laser excitation of PO photofragments of organophosphates // Atmos. Ocean. Opt. 2022. V. 35, N 4. P. 329–340.
17. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Murashko S.N. Otsenka effektivnosti lazernogo vozbuzhdeniya perekhoda B2Σ+ (v¢ = 0) - X2Π (v¢¢ = 0) oksida fosfora // Optika atmosfery i okeana. 2022. V. 35, N 5. P. 361–368.
18. Sausa R.C., Miziolek A.W., Long S.R. State distributions, quenching, and reaction of the phosphorus monoxide radical generated in excimer laser photofragmentation of dimethyl methylphosphonate // J. Phys. Chem. 1986. V. 90, N 17. P. 3994–3998.
19. Sankaranarayanan S. g-Centroids and Franck–Condon factors for the bands of A2Σ - X2Π system of PO molecule // Indian J. Phys. 1966. V. 40. P. 678–680.
20. Wong K.N., Anderson W.R., Kotlar A.J. Radiative processes following laser excitation of the A2Σ+ state of PO // J. Chem. Phys. 1986. V. 85, N 5. P. 2406–2413.
21. Smyth K.C., Mallard W.G. Two-photon ionization processes of PO in a C2H2/air flame // J. Chem. Phys. 1982. V. 77, N 4. P. 1779–1787.
22. Yin Y., Shi D., Sun J., Zhu Z. Transition probabilities of emissions and rotationless radiative lifetimes of vibrational levels for the PO radical // Astrophys. J. Suppl. Ser. 2018. V. 236, N 34. P. 1–15.
23. Verma R.D., Dixit M.N., Jois S.S., Nagaraj S., Singhal S.R. Emission spectrum of the PO molecule. Part II. 2Σ - 2Σ transitions // Can. J. Phys. 1971. V. 49, N 24. P. 3180–3200.
24. Measures R.M. Lidar equation analysis allowing for target lifetime, laser pulse duration, and detector integration period // Appl. Opt. 1977. V. 16, N 4. P. 1092–1103.
25. Panchenko Y., Puchikin A., Yampolskaya S., Bobrovnikov S., Gorlov E., Zharkov V. Narrowband KrF laser for lidar systems // IEEE J. Quantum Electron. 2021. V. 57, N 2. P. 1–5.
26. Perestraivaemye impul'snye Ti:sapphire-lazery s uzkoj liniej generatsii [Elektronnyj resurs]. URL:https://solarlaser.com/devices/narrow-linewidth-ti-sapphire-laser-model-lx329/ (data obrashcheniya: 28.02.2023).
27. Long S.R., Sausa R.C., Miziolek A.W. LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate // Chem. Phys. Lett. 1985. V. 117, N 5. P. 505–510.
28. Wong K.N., Anderson W.R., Kotlar A.J., DeWilde M.A., Decker L.J. Lifetimes and quenching of B2Σ+ PO by atmospheric gases // J. Chem. Phys. 1986. V. 84, N 1. P. 81–90.
29. Long S.R., Christesen S.D., Force A.P. Rate constant for the reaction of PO radical with oxygen // Chem. Phys. Lett. 1985. V. 84, N 10. P. 5965–5966.