«Оптика атмосферы», **1**, № 5 (1988)

Г.Ф. Банах, О.К. Войцеховская, Н.Н. Трифонова

ОПРЕДЕЛЕНИЕ ИНТЕГРАЛЬНОЙ ИНТЕНСИВНОСТИ ПОЛОСЫ v5 АЗОТНОЙ КИСЛОТЫ

В результате теоретической интерпретации спектра азотной кислоты, зарегистрированного методом диодной лазерной спектроскопии, получено значение интегральной интенсивности полосы v_5 HNO₃, равное (202 ± 40) см⁻² · атм⁻¹. С найденным значением *S* v_5 проведен расчет интенсивностей линий, не участвовавших в обработке, и получено удовлетворительное согласие с экспериментом.

Исследование спектра азотной кислоты стимулировано задачами охраны окружающей среды и важной ролью этого соединения в фотохимии атмосферы [1, 2]. Для уверенной интерпретации результатов аэростатных, баллонных, спутниковых измерений нужны данные по параметрам спектральных линий паров HNO₃, поэтому необходима разработка соответствующих методик.

Асимметричная молекула HNO₃ обладает только плоскостью симметрии и относится к группе C_s (в ранних работах встречается отнесение к группе C_{2v}). Систему координат, связанную с молекулой, обычно ориентируют [3, 4] по направлениям моментов инерции и обозначают индексами *a*, *b*, *c*, соответствующими наименьшему, среднему и наибольшему моменту.

Регистрация лабораторных спектров HNO₃ представляет значительные трудности из-за высокой реакционной способности молекулы, и известно лишь несколько работ, в которых получены экспериментальные спектры азотной кислоты [3,5–10], снятые с высоким разрешением (~ $10^{-4} \div 10^{-3}$ см⁻¹). Подробно проанализированы микроволновые спектры пяти изотопических модификаций молекулы в работе [3], и показано, что постоянный дипольный момент в молекуле расположен в плоскости (*a*, *b*) (см. рисунок), под углом 23°57′ к оси *a*. В результате измерений штарковского расщепления авторы [3] нашли $\mu_a^0 = 1,9666D$; $\mu_b^0 = 0,822D$ и полное значение $\mu_0 = \left|\mu_a^2 + \mu_b^2\right| = 2,17 \pm 0,02D$. Таким образом, молекула HNO₃, обладая значительным постоянным дипольным моментом, имеет интенсивный вращательный спектр, поэтому ряд работ посвящен анализу чисто вращательных переходов в микроволновом диапазоне и определению спектроскопических констант гамильтониана основного колебательного состояния [7, 9] и гармонического силового поля [9]. Вместе с тем важная характеристика молекулы — функция дипольно-го момента — в литературе изучена недостаточно. Назовем работу [11], в которой определено значение ∂_{11}

 $\frac{\partial \mu_b}{\partial Q_2}$ первой производной μ_b компоненты дипольного момента по нормальной координате Q_2 , и сооб-

щение [12], авторы которого определили производную $\frac{\partial \mu_a}{\partial Q_2}$ и уточнили значение $\frac{\partial \mu_b}{\partial Q_2}$.

Структура молекулы азотной кислоты (HNO₃)

Целью данной работы является определение интегральной интенсивности полосы v_5 HNO₃ и колебательных матричных элементов первой производной дипольного момента по нормальной координату Q_5 на основе экспериментальных данных [5]. В этой работе спектр HNO₃ получен методом диодной лазерной спектроскопии и приведены положения и интенсивности пиков поглощения. Точность определения центра линий составляет ± 0,005 см⁻¹, интенсивности порядка ± 20%. Все измерения проведены при температуре 296°К. Эти данные послужили основой для интерпретации спектра и определения спектроскопических констант эффективного вращательного гамильтониана [13, 14], что позволило нам провести идентификацию пиков поглощения.

Интенсивность колебательно-вращательной (КВ) линии рассчитывается по формуле

$$S_{V'R''}^{V'R'} = \frac{8\pi^3}{3hc} \frac{v_{V'R''}^{V'R''}}{v_0 Q_{VR}} g_{V'R'} n_0 \exp\left(-\frac{hc}{\kappa T} E_{V'R''}\right) \times \left[1 - \exp\left(-\frac{h_c v_{V'R''}^{V'R'}}{\kappa T}\right)\right] | < V'R' |M_z| V''R'' > |^2 \cdot F_{V'R''}^{V'R''},$$
(1)

где $h, c, k, n_0 - функциональные физические постоянные; <math>v_0, v_{V'R'}^{V'R'} -$ центры колебательной полосы и КВ линии; Q_{VR} - колебательно-вращательная статистическая сумма; $F_{V'R'}^{V'R'}$ - фактор колебательновращательного взаимодействия; V'', V', R'', R' - все наборы колебательных и вращательных квантовых чисел нижнего и верхнего состояния перехода; $|\langle V'R'|M_z|V''R''|^2(R'' = J''k''m'') -$ матричные элементы первой производной дипольного момента находились по соотношению [12]

$$\begin{split} |M_{V'J'\tau', V''J'\tau'}|^{2} &= \sum_{m''m'} \frac{3(2J''+1)}{2J''+1} |(1J''om''/J'm')|^{2} \times \\ &\times \left\{ | < V'|\mu_{x}| V'' > |^{2} \cdot |\sum_{\kappa''} g_{\kappa''\tau'}^{[V'']} ((1J''-1\kappa''/J'\kappa' \cdot g_{\kappa''-1\tau'}^{[V']} - \\ &- (1J''1\kappa''/J'\kappa') \cdot g_{\kappa''+1\tau'}^{[V']})^{2} + | < V'|\mu_{y}| V'' > |^{2} \times \\ &\times \left| \sum_{\kappa''} g_{\kappa''\tau'}^{[V'']} ((1J''-1\kappa''/J'\kappa') g_{\kappa''-1\tau'}^{[V']} + (1J''1\kappa''/J'\kappa') \cdot g_{\kappa''+1\tau'}^{[V']}) \right|^{2} \right\}, \\ &\tau = K_{A} - K_{C}. \end{split}$$

$$(2)$$

Отсутствие оси симметрии приводит, к следующим правилам отбора по вращательным квантовым числам:

$$\Delta \kappa_A = 0, \pm 1, \pm 2 ...; \Delta \kappa_C = \pm 1, \pm 2, ...; \Delta J = 0, \pm 1,$$

Где $g_{k'\tau'}^{||r'||}$ — коэффициенты разложения вращательной волновой функции в базисе жесткого симметричного волчка; m'' — магнитное квантовое число; (1J''-1k''/J'k') и т.д. — коэффициенты Клебша — Гордона. Расчеты величины (1) проводились на базе программного средства [15], в качестве исходных данных для расчета энергетических уровней использовались константны гамильтониана в форме Уотсона [14] до секстичных постоянных включительно. Величину $F_{V'R'}^{V'R'}$ в данном случае можно считать равной 1, так как молекула достаточно тяжелая, и приближение жесткого волчка вполне оправдано. Тогда значения $\langle V'' | \mu_a | V' \rangle$, $\langle V'' | \mu_b | V' \rangle$ можно найти из набора интенсивностей отдельных линий и рассчитать $S_{V'V'}$ для фундаментальной полосы [16]:

$$S_{V''V'} = \frac{8\pi^3}{3hc} \,\nu_0 \, \frac{n}{Q_V} \, \sum_{g=a,b} | < V'' \, | \, \mathfrak{p}_g \, | \, V' > |^2. \tag{3}$$

Наибольшие затруднения в данной работе вызвала задача идентификации пиков поглощения, зарегистрированных в [5], с рассчитанными нами по начальному приближению $\langle \mu_a \rangle, \langle \mu_b \rangle$ линиями. Спектр HNO₃ характеризуется значительной плотностью линий и каждый пик представляет собой суперпозицию большого числа КВ переходов. В эксперименте расстояние между пиками порядка 0,01 ÷ 0,001 см⁻¹, что перекрывалось погрешностью расчета центров. Поэтому критерием выбора линий поглощения для обработки с целью получения значений были переходы, идентифицированные в работе [13], не перекрывающиеся с линиями полосы 2v₉ и представляющие собой одиночные линии, т. е. пики поглощения, которые можно было отнести к одному колебательно-вращательному переходу.

V _{әксп} .		Кв J'	антовы <i>К[′]_аК′</i>	е числа <i>Ј″К[″]аК</i>	* " C	-	S _{эксп.} см/мол·10 ²¹	S _{расч} см/мол•10 ²¹	δ%
1	P. 19		2				3	4	5
891.246	30	0	30	29	0	29	6,89	7,06	2,5%
891,258	29	1	28	28	1	27	6,85	6,607	3,5%
891.271	28	2	26	27	2	25	6,06	6,18	2%
891,286	27	3	24	26	3	23	6,22	5,77	7 %
891.627	31	0	31	30	0	30	7,02	6,86	2,2%
891.641	30	1	29	29	1	28	6,94	6,44	7%
891,654	29	2	27	28	2	26	6,23	6,038	3%
891,669	28	3	25	27	3	24	6,74	5,66	16%
891.687	27	4	23	26	4	22	6,27	5,29	15%
892.002	32	0	32	31	0	31	6,73	6,649	1 %
892.017	31	1	30	30	1	29	7,07	6.252	11%
892.032	30	2	28	29	2	27	6,14	5,878	4 %
892.048	29	3	26	28	3	25	5,51	5,524	0,3%
892.064	28	4	24	27	4	23	6,72	5,186	23%
892,090	27	5	22	26	5	21	5,74	4,86	15%
892 376	33	0	33	32	0	32	5,72	6,42	12%
892,390	32	1	31	31	1	30	5,38	6.05	12%
892 405	31	2	29	30	2	28	6,35	5,70	10%
892 420	30	3	27	29	3	26	5,55	5,374	3%
892 438	29	4	25	28	4	24	4,36	5,06	16%
892 459	28	5	23	27	5	22	4,47	4,76	- 6%
892,756	34	0	34	33	0	33	5.38	6,185	15%
892 775	33	1	32	32	1	31	5.11	5,839	14%
892 788	32	2	30	31	2	29	4.84	5,515	14%
892,803	31	3	28	30	3	27	4,48	5,21	16%
892 821	30	4	26	29	4	25	6,44	4,92	23%
892,842	29	5	24	28	5	23	3,88	4,64	19%
893,135	35	0	35	34	0	34	4,92	5,93	20%
893 150	34	1	33	33	1	32	3,35	5,60	67%
893,166	33	2	31	32	2	30	3,21	5,31	65%
893 181	32	3	29	31	3	28	3,40	5,03	48%
893 197	31	4	27	30	4	26	3,07	4,76	55%
893.217	30	5	25	29	5	24	2,94	4,51	53%
893 243	29	6	23	28	6	22	3,25	4,26	31 %
893,500	36	0	36	35	0	35	5,10	5,68	11%
893,517	35	1	34	34	1	33	4,99	5,38	8%
893 533	34	2	32	33	2	31	5,39	5,108	5%
893 549	33	3 3	30	32	3	29	4,24	4,84	14%
893 566	32	2 4	28	31	4	27	5,00	4,60	8%
802 585	31	1 5	26	30	5	25	3,38	4,36	29%
093,303	01		20	90	6	23	3 33	4.139	24%
893,609	30	, 6	24	29	0	. 20	0.41	3 70	8.0/
893,646	29	9 7	22	28	7	21	3,41	5,10	0 70
893,872	3	7 () 37	36	0	36	3,60	5,42	50%
893,889	30	6 1	35	35	1	34	3,96	5,14	29%
893,905	3	5 2	2 33	34	2	32	3,97	4,89	23%
893,922	3	4 3	3 31	33	3	30	3,31	4.65	40%
893,939	3.	3 4	4 29	32	4	28	3,79	4,426	16%

Сравнение экспериментальных и рассчитанных интенсивностей линий полосы v5

Продолжение табл. 1

1			2	2			3	4	5
893,958	32	5	27	31	5	26	3,15	4,20	33%
893,981	31	6	25	30	6	24	4,53	4,004	11%
894,010	30	7	23	29	7	22	2,96	3,80	28%
894,246	38	0	38	37	0	37	6,49	5,165	20%
894,265	37	1	36	36	1	35	6,06	4,91	19%
894,281	36	2	34	35	2	33	6,60	4,673	29%
894,298	35	3	32	34	3	31	4,95	4,452	10%
894,315	34	4	30	33	4	29	4,23	4,24	0,3%
894,333	33	5	28	32	5	27	5,22	4,047	22%
894,355	32	6	26	31	6	25	3,64	3,859	6%
894,381	31	7	24	30	7	23	4,35	3,677	15%
894,425	30	8	22	29	8	21	4,27	3,32	22%
894,612	39	0	39	38	0	38	7,51	6,23	17 %
894,631	38	1	37	37	1	36	5,14	4,666	9%
894,649	37	2	35	36	2	34	4,99	4,448	10%
894,666	36	3	33	35	3	32	4,79	4,246	11%
894,684	35	4	31	34	4	30	4,96	4,056	18%
894,702	34	5	29	33	5	28	4,25	3,877	8%
894,723	33	6	27	32	6	26	3,69	3,706	0,4%
894,748	32	7	25	31	7	24	3,53	3,54	0,3%
894,783	31	8	23	30	8	22	3,17	3,38	6%
894,981	40	0	40	39	0	39	4,08	4,639	13%
895,001	39	1	38	38	1	37	4,92	4,42	10%
895,018	38	2	36	37	2	35	4,10	4,22	3%
895,036	37	3	34	36	3	33	5,93	4,038	32%
895,053	36	4	32	35	4	31	4,36	3,865	11%
895,072	35	5	30	34	5	29	3,38	3,70	9%
895,092	34	6	28	33	6	27	3,27	3,547	8%
895,116	33	7	26	32	7	25	4,09	3,398	17%
895,146	32	8	24	31	8	23	3,05	3,25	6 %
895,340	41	0	41	40	0	40	4,11	4,378	6%
895,361	40	1	39	39	1	38	5,42	4,179	22%
895,379	39	2	37	38	2	36	4,88	3,996	18%
895,398	38	3	35	37	3	34	4,87	3,828	21%
895,415	37	4	33	36	4	32	4,68	3,67	21%
899,433	36	5	31	35	5	30	5,20	3,52	32%
895,454	35	6	29	34	6	28	4,68	3,38	27%
895 476	34	7	27	33	7	26	3.21	3 249	1 %

Применяя принцип метода наименьших квадратов и используя результаты предварительного расчета и данные эксперимента [5], получены значения $\mu_a^{(5)}, \mu_b^{(5)}$ равные:

 $< V'' | \mu_a^{(5)} | V' > = \pm 0,1035242 D; < V'' | \mu_b^{(5)} | V' > = \pm 0,1328900 D.$

Обращаясь к соотношению (3), находим $S_{V'V'}^{(5)} = 202,5667 \text{ см}^{-2} \text{ атм}^{-1}$.

Значения Q_V , Q_R рассчитывались по приближенным формулам [17], причем собственные частоты заимствовались из работы [18].

Обсудим полученное значение интенсивности. В работе [19] приводится суммарное значение интегральных интенсивностей полос v_5 и 2 v_9 , равное 582 см⁻² атм⁻¹ при $T = 313^{\circ}$ К. Далее, согласно работе [18] интегральные интенсивности обеих полос близки между собой по величине. Авторы [18] ввели семь качественных оценок: VVS; VS; S; M; W; VW; VVW и отнесли полосы v5 и 2v9 к одной и той же категории S, что косвенно подтверждает правильность полученного нами значения.

Проверка полученных значений $|\mu_a^{(5)}|^2$, $|\mu_b^{(5)}|^2$ заключалась в расчете интенсивностей линий, не участвовавших в обработке. Для этой процедуры выбраны линии, центры и квантовая идентификация которых приведены в табл. 2 работы [14], так как согласно указанию авторов [14] эти линии можно отнести к уверенно идентифицированным. Но следует отметить, что в указанной работе представлено отнесение экспериментальной линии к одному переходу, в то время как наши расчеты показывают, что большинство из них представляет собой квартет линий с квантовыми числами

так как практически уровни с одинаковыми k_A для молекулы HNO₃ вырождены, что отмечено в работе [13]. Подтверждением этого могут служить также значения вращательных уровней основного колебательного состояния, приведенные в работе [7], которые, начиная с Ј ~ 10, для состояний с одинаковыми k_A совпадают до шестой цифры после десятичного знака. Сравнение рассчитанных и экспериментальных значений интенсивностей линий с найденными значениями $\langle V'' | \mu_{a(b)} | V' \rangle$ приведены в табл. 1.

Проведенный ниже анализ данных показывает, что полученные величины матричного элемента дипольного момента могут служить основой для расчета вращательной структуры полосы v₅. Общее число предсказанных линий равнялось 85, для 15 линий величина отклонения $\delta = \left| \frac{S_{_{3ксп}} - S_{_{pacy}}}{S_{_{3ксn}}} \right| 100\%$ составляла менее 5%, для 45 линий — 5 < δ < 20%, для остальных линий — δ > 20%. Среднее отклонение $\delta = \sum_{i=1}^{N} \frac{\delta_i}{N}$ оказалось равным 16,8%, что не превысило погрешности эксперимента (20%). Ми-

нимальное и максимальное отклонения — 0,3% и 67% соответственно.

Имеющиеся расхождения (в ряде линий довольно значительные), на наш взгляд, объясняются пренебрежением колебательно-вращательным взаимодействием при расчете интенсивностей. Действительно, состояния v_5 и $2v_9$ связаны резонансом Ферми ($\Delta E \sim 17$ см⁻¹) и возможно также Кориолисово взаимодействие. Но эти вопросы представляют собой предмет дополнительного исследования, для которого необходимы спектры HNO₃, зарегистрированные с более высоким спектральным разрешением.

- Мак-Ивен М., Филлипе Л. Химия атмосферы М.: Мир, 1976. 375 с.
 Kunde V.G., Brasunas J.C., Coutrath B.J. et al. Appl Opt., 1987, v. 26, N. 3, p. 545.

- 3. Сох А.Р., Riveros J.M. J. Chem. Phys., 1965, v. 42, № 7, с. 3106. 4 Таунс Ч., Павлов А. Радиоспектроскопия. М.: ИЛ, 1959, с. 736. 5. Brockman Ph., Bair C.H., Allario F. Appl. Opt., 1988, v. 17, N 1, p. 91.

- 6. Bair C.H., Brockman Ph. Appl. Opt., 1979, v. 18, N. 24, p. 4152.
 7. Cazzohli G., Lucia F.G. J. Mol. Spectr., 1979, v. 76, p. 131.
 8. Chevillard J.-P., Girandel R. J. Phys., 1978, v. 39, p. 517.
 9. Ghosh P.N., Blom C.E., Bauder A. J. Mol. Spectr. v. 89, p. 159.
- 10. Maki A.G., Wells J.S. J. Mol. Spectr., 1980, N. 2, p. 427.
- 11. Farrow L.A., Richton R.E. J. Chem. Phys., 1981, v. 74, N. 10, p. 5474. 12. Войцеховская О.К., Конусов Ф.В., Черепанов В.Н. Изв. вузов, Физика, 1986, N 2, с. 114. 13. Dana V. – Spectrochim. Acta, 1978, v. 34A, p. 1027.
- 14. Maki A.G., Wells J.S. J. Mol. Spectr., 1984, v. 108, p. 17.

15. Войцеховская О.К., Макушкин Ю.С., Трифонова Н.Н., Черепанов В.Н. — Программа расчета центров и интенсивностей колебательно-вращательных линий молекул типа асимметричного волчка (имя программы YDIGEL) ГОСФАП, № П004348, 1980. — 53 с.

16. Rao K.N., Rinsland C.P., Smith M.A.H., Fridovich B. Molecular Spectroscopy: Modern Research. - N. Y., 1985, p. 111.

Институт оптики атмосферы СО АН СССР, Томск

Поступила в редакцию 31 декабря 1987 г.

G.F. Banakh, O.K. Voitsekhovskaya, N.N. Trifonova. Determination of the v5-Band Total Intensity of HNO₃.

 HNO_3 absorption spectrum measured by diode laser spectroscopy was theoretically interpreted to yield a v_5 -band total intensity of 202 ± 40 cm⁻² atm⁻¹. This value was used for calculating of the spectral line intensities not fitted by the least-squares procedure. The resulting data showed reasonable agreement with experiment.

^{17.} Герцберг Г. Колебательные и вращательные спектры многоатомных молекул. – М.: ИЛ, 1949. – 647 с. 18. McGraw G.E., Bermitt D.L., Hisatsune I.C. – J. Chem. Phys., 1965, v. 42, N. 1, p. 237. 19. Goldman A., Kyle T.G., Bonomo P.S. – Appl. Opt., 1971, v. 10, N. 1, p. 65.