Н.Е. Лебедев, С.В. Станичный

СВЯЗЬ НИСХОДЯЩЕГО ИЗЛУЧЕНИЯ АТМОСФЕРЫ В ИК-ДИАПАЗОНЕ 10...12 МКМ С ИНТЕГРАЛЬНЫМ ПРОПУСКАНИЕМ

Представлена связь интегрального пропускания атмосферы P_0 с нисходящим и пригоризонтальным излучением атмосферы I(0), I(90) в виде соотношения $I(0)/I(90) = C_0(1 - P_0)$, где $C_0 = 0.92...0.93$. Оно основано на численных расчетах по модели LOWTRAN 7 и аналитических расчетах с использованием параметризаций для вертикальных профилей температуры и функции пропускания атмосферы; абсолютная точность определения P_0 по этому соотношению оценивается в 0,02, практическая точность определения P_0 по экспериментально определенным I(0), I(90) составляет 0,035...0,025 при $P_0 = 0.5...0,85$.

Приведены расчеты P₀ для экспериментальных данных, полученных на акватории Атлантики в спектральных интервалах 11 и 12 мкм; связь P₀ с влажностью приводного воздуха *а* близка к линейной.

В задачах тепловой локации и дистанционного измерения температуры наибольший интерес представляет проблема распространения ИК-излучения в так называемых <окнах прозрачности> атмосферы, где пропускание максимально, а искажающее влияние соответственно минимально. Экспериментальные и теоретические исследования пропускания безоблачной атмосферы в ИКдиапазоне являются предметом изучения в [1–4]. Измерения пропускания проводятся либо по измерению солнечного излучения, либо при помощи многоходовых кювет и имеют ошибку 0,02– 0,05 [2]. Такие измерения требуют привлечения довольно сложного измерительного оборудования, что затрудняет проведение экспериментальных исследований в широком диапазоне реальных метеоусловий. В то же время большое распространение получили радиометры [5–7], которые достаточно просты и имеют высокую температурную чувствительность.

В статье предлагается методика оценки пропускания атмосферы в диапазоне 800–1000 см⁻¹ по измерениям нисходящего и пригоризонтального излучений *I*(0), *I*(90).

Модельные оценки

Для трех моделей атмосферы (тропическая, среднеширотное лето, арктическое лето) по программе LOWTRAN 7 были рассчитаны интенсивности нисходящего зенитного и пригоризонтального излучений I(0), I(90) для спектральных интервалов 800...1000 см⁻¹ (12,5...10 мкм) с шагом 5 см⁻¹. На рис. 1 представлена связь интегрального пропускания P_0 атмосферы с отношением I(0)/I(90). На практике I(90) можно заменить величиной $B(T_0) - функцией Планка от приповерх$ $ностной температуры атмосферы <math>T_0$, т.к. $B(T_0) \approx I(90)$. Максимальные отклонения находятся в спектральных интервалах 980 ... 1000 см⁻¹, где сказывается селективное поглощение озоном.

Рис. 1. Связь интегрального пропускания P_0 с интенсивностью нисходящего зенитного излучения, нормированной на интенсивность пригоризонтального излучения I(0)/I(90) для трех моделей атмосферы по LOWTRAN 7: тропической (+++), летней среднеширотной ($\circ \circ \circ$), летней арктической (×××) в спектральных интервалах 800–1000 см⁻¹ с шагом 15 см⁻¹

Лебедев Н.Е., Станичный С.В.

Эта связь с отклонениями не более 0,015 для спектральных интервалов 800...980 см⁻¹ (не более 0,04 для 980...1000 см⁻¹) описывается выражением:

$$I(0) / B(T_0) \approx I(0) / I(90) = C_0 (1 - P_0),$$
(1)

где $C_0 = 0.93$.

Таким образом, расчеты по LOWTRAN 7 показывают, что, зная интенсивность нисходящего и пригоризонтального излучения (или температуру приводного воздуха), с точностью около 0,02 можно определять интегральное пропускание вертикального столба атмосферы. Это позволяет, например, по аэрологическим измерениям оценивать влияние на перенос излучения различных атмосферных компонентов.

В то же время реальные профили функции пропускания и температуры могут отличаться от модельных, представленных в LOWTRAN 7. На простом примере проведем оценку такого отличия, учитывая, что характерными для атмосферы являются линейный вертикальный профиль температуры и экспоненциальный для поглощающих компонент. Пусть функция пропускания *P* и высотный профиль температуры *T* задаются выражениями

$$P(z; 0) = P_0 + (1 - P_0) \exp(-\beta z);$$
⁽²⁾

$$T(z) = T_0 - \alpha z, \tag{3}$$

где α и β – некоторые константы; *z* – высота; $P_0 = P(\infty, 0)$ – интегральное пропускание атмосферы. Уравнение переноса, нормированное на $B(T_0)$, имеет вид

$$\Gamma = \frac{I(0)}{B(T_0)} = \int_0^\infty \frac{B(T(z)) \partial P(z; 0)}{B(T_0) \partial z} dz.$$
(4)

Характерной особенностью уравнения (4) является тот факт, что подынтегральное выражение знакопостоянно на всем интервале интегрирования, а следовательно, величина Γ монотонна по параметрам α и β . Таким образом, для любых более сложных профилей $T_c(z)$ и $P_c(z; 0)$, лежащих между профилями температуры и пропускания, задаваемыми величинами $\alpha 1 < \alpha 2$ и $\beta 1 < \beta 2$, будут выполняться соотношения $\Gamma(\alpha 1) < \Gamma_c < \Gamma(\alpha 2)$ и $\Gamma(\beta 1) < \Gamma_c < \Gamma(\beta 2)$.

Подставляя значение T(z) согласно (3) в функцию Планка и учитывая, что все поглощающие компоненты находятся в нижней тропосфере, т.е. на области интегрирования $\alpha z \ll T_0$, имеем

$$B(T(z)) / B(T_0) = \left[\exp\left(\frac{h c}{\lambda k (T_0 - \alpha z)}\right) - 1 \right] / \left[\exp\left(\frac{h c}{\lambda k T_0}\right) - 1 \right] \approx \exp\left(-h c \alpha z / (\lambda k T_0^2)\right).$$

Переходя в (4) к интегрированию по *P*, с учетом (2) получаем $z = -1/\beta \ln[(P - P_0)/(1 - P_0)]$, соответственно

$$\Gamma \approx \int_{P_0}^{1} \exp\left\{ (h c \alpha / \lambda k T_0^2 \beta) \ln[(P - P_0)/(1 - P_0)] \right\} dP(z; 0) = (1 - P_0) / (1 + h c \alpha / (\lambda k T_0^2 \beta)).$$
(5)

Выражение (5) можно записать в виде

$$\Gamma = C \left(1 - P_0 \right), \tag{6}$$

где параметр $C = C (\alpha, \beta, \lambda, T_0); C \approx 1.$

.

Для характерных значений $\alpha = 6$ К/км, $\beta = 1,1$ км⁻¹, $\lambda = 11,0$ мкм, $T_0 = 300$ К, C = 0,92, что хорошо совпадает с рассчитанным ранее значением $C_0 = 0,93$.

Связь нисходящего излучения атмосферы

Выражение (5) совпадает с точным решением (4) при $\alpha \to 0$ или $\beta \to \infty$, т.е. при изотермической атмосфере или когда все поглощающие компоненты находятся вблизи поверхности – в этих случаях величина $\Gamma = 1 - P_0$ согласно (4) и (5).

Анализируя выражение (5), нужно отметить слабую зависимость параметра *C* от длины волны. Так, при указанных выше значениях α , β и T_0 для λ =8 мкм *C*=0,923, а для λ =12,5 мкм *C*=0,935, что при выборе *C*=0,93 дает ошибку δP оценки величины P_0 : $\delta P \leq 0,007$; следовательно, выражение (1) будет справедливо с указанной точностью для любого спектрального интервала внутри рассматриваемого диапазона 800...1000 см⁻¹.

Из (5) видно, что при вариациях $\alpha = 0...12$ К/км, т.е. от изотермической до атмосферы с очень быстро убывающей в зависимости от высоты температурой, максимальные ошибки определения P_0 при $P_0 = 0,5...1$ не превысят 0,05. Характерные вариации $\beta = 0,4...10$ км⁻¹ (большие значения соответствуют ситуациям, когда основные поглощающие компоненты находятся у поверхности, например туман), также приводят к ошибкам, не превышающим 0,05 в указанном диапазоне.

Оценка погрешности расчета P₀ по данным измерений имеет вид

$$\frac{\delta P_0}{P_0} \approx \frac{1 - P_0}{P_0} \left(\frac{\delta C_0}{C_0} + \frac{\delta I(90)}{I(90)} + \frac{\delta I(0)}{I(0)} \right) + \frac{0.02}{P_0};$$

последнее слагаемое характеризует точность соотношения (1). Первое слагаемое в скобках не превышает 0,025. Параметры ИК-радиометра позволяют определять значения I(90) с погрешностью 1% и I(0) с погрешностями 1,5; 4 и 6% при $P_0 = 0,5$; 0,7 и 0,85. Тогда $\delta P_0 \approx 0,035$; 0,03 и 0,025 а $\delta P_0/P_0 \approx 7$; 4 и 3% для данных величин P_0 . Таким образом, по измеренным величинам I(0) и I(90) можно довольно точно определить интегральное пропускание атмосферы в широком диапазоне изменения метеорологических параметров.

Экспериментальные исследования

Для проведения двухканальных измерений в лаборатории радиометрии МГИ АН Украины был разработан специальный комплекс, включающий в себя средства управления и регистрации излучения. Изменение угла визирования осуществлялось поворотом зеркала и составляло от 0 до 180° от зенита, причем поворот зеркала позволял осуществлять визирование калибровочной ванны. Конструктивная схема радиометра аналогична описанной в [7].

Область чувствительности радиометра определялась фильтрами с центрами 11 и 12 мкм и шириной пропускания 0,3 мкм.

Измерения проводились на Северной Атлантике от 0 до 55°с.ш. в Северном море, на разрезе через Атлантику от Великобритании до Бостона, на широтном разрезе от Бостона до 10°с.ш., у Северо-Западного побережья Африки, в Средиземном и Черном морях.

В качестве примера на рис. 2 приведена зависимость отношения оптических толщин $\tau(\lambda=11)/\tau(\lambda=12 \text{ мкм}), \tau(\lambda)=\ln(P_0(\lambda))$, рассчитанных по экспериментальным данным, от влажности приводного воздуха *a* (г/м³). Постоянство или слабая изменчивость такого отношения лежат в основе двуспектральных методик восстановления ТПО [8–10]. Отметим, что полученное по (1) 1400 Лебедев Н.Е., Станичный С.В.

среднее значение такого отношения 0,6 отличается от рассчитанного по LOWTRAN 7 для стандартных атмосфер 0,71, что явилось следствием больших значений P_0 (рассчитанных по LOWTRAN 7) для канала 12,0 мкм, чем полученных экспериментально в сходных метеоусловиях.

Проведение синхронных аэрологических измерений вместе с измерениями нисходящего излучения позволит оценить качество расчетных моделей LOWTRAN.

Другим аспектом использования соотношения (1) может быть поиск связи пропускания P_0 с приповерхностными температурой и влажностью, позволяющей прогнозировать характеристики переноса излучения только по метеорологическим измерениям.

На рис. З показана зависимость интегрального пропускания P_0 в спектральных интервалах 11 и 12 мкм от влажности приводного воздуха для измерений, полученных на акватории Северной и Экваториальной Атлантики. Она аппроксимируется зависимостью вида $P_0 = 1,03 - 0,035 a$ для канала 12мкм и $P_0 = 1,14 - 0,032 a$ для канала 11 мкм.

Такая связь *P*₀ с *а* может быть следствием существующей автомодельности вертикальных профилей последней [11].

Заключение

В статье на основе численных (по LOWTRAN 7) и аналитических расчетов с использованием параметризаций для вертикальных профилей температуры и функции пропускания атмосферы предложена методика определения интегрального пропускания атмосферы P_0 по измерениям нисходящего и пригоризонтального излучения атмосферы I(0), I(90).

Приведены расчеты P_0 для экспериментальных данных, полученных на акватории Атлантики в спектральных интервалах 11 и 12 мкм; величина P_0 оказалась линейно связанной с влажностью приводного воздуха *а* в диапазоне 10 ... 23 г/м³.

Авторы выражают признательность И.А. Осовскому за разработку программного обеспечения первичной обработки данных.

- 2. Парамонова Н. Н. // Труды ГГО. 1985. Вып. 496. С. 79–84.
- 3. Ф о м и н В.В. Молекулярное поглощение в инфракрасных окнах прозрачности. Новосибирск: Наука, 1986. 234 с.
- 4. K n e i z y s F.X., Sh e t t l e E.P. et al. User's Guide to LOWTRAN 7 // Rep. GL-TR-89-0122, Burlington. MA: Spectral Sciences, Inc. 1989.

5. Бычкова И.А., Викторов С.В., Виноградов В.В. Дистанционное определение температуры моря. Л.: Гидрометеоиздат, 1988. 224 с.

- 6. Поварков В.И., Иванов Н.Е.// ОМП. 1983. N 4. С. 32-33.
- 7. Скорохватов Н.А., Попов Н.М. // Тезисы докладов Всесоюзн. совещания по актинометрии. Таллин, 1980. Т. 2. С. 164–167.
- 8. Чавро А.И.//Исследование Земли из космоса, 1982. N 5. С. 112–115.
- 9. B a r t o n I. J. // Quart. J. Roy. Meteor. Soc. 1983. V. 109. P. 365–378.
- 10. Prabhacara C., Dalu G., Kunde V.G.// Journ. Geophys. Res. 1974. V. 79. N 33. P. 5039–5044.
- 11. Тимофеев Н.А. // Метеорология и гидрология. 1979. N 8. С. 55-62.

Связь нисходящего излучения атмосферы

^{1.} Ла Рокка // ТИИЭР. 1975. Т. 63. С. 89–111.

Морской гидрофизический институт АН Украины, г. Севастополь

Поступила в редакцию 31 января 1994 г.

 $N.E.\ Lebedev,\ S.V.\ Stanichny.$ Relation Between Downward IR 10...12 μm Atmospheric Radiation and Integral Transmittance.

Relation between integral atmospherical transmittance P_0 and downward and near-horizontal atmospherical radiation I(0), I(90) is presented as $I(0)/I(90) = C_0(1 - P_0)$, where $C_0 = 0.92 \dots 0.93$. It is based on LOWTRAN 7 model of numerical calculations and analytical calculations using parametrized vertical temperature profile and atmospheric transmittance function. Absolute accuracy of P_0 determination via this relation is estimated as 0.02, while its practical accuracy based on experimentally measured I(0), I(90) is about 0.035 ... 0.025 for P_0 range from 0.5 to 0.85.

 P_0 calculations based on the Atlantic Ocean experimental data in the spectral intervals of 11.0 and 12.0 μ m are presented; dependence of P_0 on near surface air humidity *a* is close to linear one.