УДК 551. 5: 612. 396

Р.Р. Агишев, Л.Р. Айбатов, Ю.Е. Польский

НЕПРЕРЫВНЫЙ ИК-ЛИДАР ДЛЯ ДИСТАНЦИОННОГО КОНТРОЛЯ УТЕЧЕК ПРИРОДНОГО ГАЗА

Представлены оценки предельных характеристик ЛЧМ-непрерывных лидаров. Проведен сопоставительный анализ различных методов контроля окружающей среды. Рассмотрены энергетические и точностные характеристики анализируемых систем. Обсуждаются принципы построения непрерывных лидаров.

Введение

В настоящее время не ослабевает интерес к использованию лазеров для дистанционного контроля микроконцентраций различных газов в атмосферном воздухе. Весьма важным является анализ содержания углеводородов, особенно предельных углеводородов: метана, этана, пропана, бутана и т.д., которые очень широко применяются на практике.

Однако внедрение лазерных систем дистанционного зондирования окружающей среды ограничивается экспериментальными проектами и лабораторными макетами. Дело в том, что традиционный путь контроля состояния окружающей среды и дистанционного химического анализа загрязнений атмосферы основан на использовании импульсных лидарных систем. Извлечение информации о распределении параметров атмосферы по дальности в таких системах осуществляется по уровню принятого фотодетектором сигнала в момент времени, определяемый задержкой рассеянного сигнала относительно зондирующего импульса [1, 2]. Применяемые в них мощные импульсные лазеры имеют высокую стоимость, громоздкую и ненадежную систему накачки, генерируют мощные импульсные помехи и требуют водяного охлаждения.

Однако существует альтернативный подход к построению лидарных систем, обусловленный энергетической эквивалентностью импульсного лидара с высокой пиковой мощностью и малой длительностью импульса и непрерывного лидара с малой средней мощностью излучения и большим временем наблюдения. Во втором случае используемые непрерывные газовые лазеры значительно дешевле, а контроль дальности производится путем измерения разности частот излучаемого и принимаемого сигналов или разности фаз.

2. Возможности и ограничения подобных систем

Одним из наиболее распространенных и широко применяемых непрерывных лазеров является Не–Ne-лазер. Наличие у него двух близких переходов $\lambda_0 = 3,3922$ (3 s_2 –3 p_4 Ne) и $\lambda_1 = 3,3912$ мкм (3 s_2 –3 p_2 Ne), совпадающих с основной полосой поглощения многих углеводородов, стимулирует разработку на этой основе дистанционных систем контроля. Обсудим возможности и ограничения, присущие таким системам.

Прежде всего отметим, что фоновая концентрация CH₄ в сухом воздухе при атмосферном давлении и температуре 273 К в городских условиях колеблется на уровне $N_b = 1$ ppm, или $4 \cdot 10^{13}$ см⁻³, а сечение поглощения CH₄ на длине волны 3,3912 мкм σ_{abs} равно 10^{-18} см². Поэтому коэффициент ослабления зондирующего лазерного излучения, вызванный поглощением в CH₄, можно оценить величиной $\alpha = N_b \sigma_{abs} = 4$ км⁻¹. Согласно [5] при нормальных условиях, и даже при относительной влажности около 100%, вклад паров воды не превышает 1/20 от вклада фоновой концентрации CH₄. Следовательно, на длине волны наиболее сильной линии He–Neлазера в спектральной области 3,39 мкм ослабление излучения в атмосфере, более прозрачной, чем слабый туман (метеорологическая дальность видимости V > 1 км), определяется поглощением в метане. В тумане ($V = 0, 2 \dots 1$ км) следует учитывать вклад метана и рассеяния.

Р.Р. Агишев, Л.Р. Айбатов, Ю.Е. Польский

1624

2.1. Метод дифференциального поглощения

Рассмотрим характеристики системы контроля метана, основанной на методе дифференциального поглощения [6, 7]. Мощность сигнала, отраженного от топографического объекта, может быть представлена в виде

$$P = G P_0 A g \exp(-2\alpha R) t / \pi R^2, \qquad (1)$$

где G – геометрический фактор; P_0 – мощность зондирующего излучения; A –площадь приемного объектива; g – альбедо топографического объекта; t – коэффициент пропускания оптической системы и фильтров; R – дальность действия.

Не вдаваясь в физическую природу явлений, собственные шумы приемников излучения, не охлаждаемых до криогенных температур (например, фоторезисторы PbSe), определяют пороговую мощность при прямом детектировании следующим образом:

$$P_{t} = \sqrt{S \,\Delta F \,/\, D^{*} \approx 10^{-9} \,\mathrm{Br.}} \tag{2}$$

Уровень фоновой радиации дневного неба оценим по известному из [8] соотношению

$$P_{b} = \pi B_{\lambda} \Delta \lambda A t \theta^{2} / 4, \tag{3}$$

где B_{λ} – спектральная яркость фона неба; $\Delta \lambda$ – ширина полосы пропускания интерференционного фильтра; θ – плоский угол поля зрения приемника. В предположении $B_{\lambda} = 10^{-1}$ ¹ Вт/м² · ср · мкм, $\Delta \lambda = 0,06$ мкм, $\theta = 3$ мрад, A = 0,01 м² будем иметь $P_{\alpha} \approx 10^{-10}$ Вт.

Как видно, даже для полосы частот в 10 Гц собственные шумы фотодетектора превалируют над фоновыми. Таким образом, отношение сигнал-шум на входе фотодетектора, как следует из (1) и (2), равно

$$S / N = G P_0 A g t \exp(-2\alpha R) D^* / \pi R^2 \sqrt{S \Delta F} = 10^3 [\kappa m^2] \exp(-2\alpha R) / R^2.$$

Для дальностей 0,1 и 1 км отношение сигнал-шум при мощности лазера около 0,01 Вт равно соответственно 4,5 · 10⁴ и 0,33.

2.2. Лидарный метод ДПиР

При контроле утечек газа лидарным методом дифференциального поглощения и рассеяния (ДПиР) уравнение измерения имеет вид

$$P = G E c A \beta \exp(-2\alpha R) t / R^2,$$
(4)

где *G* – геометрический фактор; *E* – энергия излучения лазера; β – объемный коэффициент рассеяния; $\beta = i_{\pi} \alpha$; i_{π} – индикатриса рассеяния под углом π . Для пологих индикатрис рассеяния с погрешностью, не превышающей ±20%, достаточной для оценочных расчетов, согласно [2] можно принять

$$i_{\pi} = 0.02 \ \alpha^{-0.43}.$$
 (5)

Тогда

$$P = 0.01 E G c A \alpha^{0.57} \exp(-2\alpha R) t / R^2.$$
(6)

2.2.1. Режим прямого детектирования

Минимально регистрируемый сигнал в режиме прямого детектирования определяется так же, как и в предыдущем случае, с той лишь разницей, что необходима значительно большая

полоса пропускания аппаратуры ΔF для обеспечения требуемой разрешающей способности по дальности. Для $\sqrt{S} = 0,1$ мм, $D^* = 5 \cdot 10^{10}$ см $\sqrt{\Gamma \mu}/BT$ и $\Delta F = 7,5$ МГц ($\Delta R = 10$ м) $P_{\min} = 5 \cdot 10^{-10}$ Вт. Отношение сигнал-шум в этом случае для V = 10 км равно

$$S / N = E c \beta A t \exp(-2\alpha R) D^* / 2 \sqrt{S} \Delta F R^2 \approx 2.5 \cdot 10^3 \left[\kappa m^2 / \Im \kappa \right] \cdot E \cdot \exp(-2\alpha R) / R^2.$$
(7)

Приняв коэффициент различимости равным 10, для дальностей 0,1 и 1 км минимальная энергия *Е* зондирующего излучения равна соответственно 0,44 и 1670 Дж.

2.2.2. Режим гетеродинного детектирования

При гетеродинном детектировании уровень минимально регистрируемого сигнала

$$P_{\min} = \hbar c \Delta F / \eta \lambda, \tag{8}$$

где \hbar – постоянная Планка; c – скорость света; η – квантовая эффективность приемника излучения. Необходимая полоса частот в этом случае значительно снижается, так как требуется выделить лишь спектр сигнала биений принятого и излученного сигналов, и $\Delta F = 10$ кГц. Для $\eta = 0,1 P_{\min} = 3 \cdot 10^{-15}$ Вт.

Отношение сигнал-шум в режиме гетеродинирования

$$S/N = E A t \beta \exp(-2\alpha R) \eta \lambda/2 h \Delta F R^2 = 2 \cdot 10^8 \left[\kappa M^2/\beta \pi^{-1}\right] \cdot E \cdot \exp(-2\alpha R)/R^2.$$
(9)

На дальностях 0,1 и 1 км $E_{\min} = 10^{-10}$ и 5 · 10⁻⁵ Дж соответственно. В табл. 1 представлены характеристики лидаров, реализующих рассмотренные методы измерений.

Таблица 1

Тип лидара	Характеристики					
	ΔF , Гц	Фотодетектор	D^* , см $\sqrt{\Gamma II}/B$ т	Т, К	\sqrt{S} , мм	P _{min} , Вт
Дифференциальное поглощение	10 ²	PbSe	10 ⁹	293	1	10-9
ДПиР, прямое детектирование	$7,5.10^{6}$	CdHgTe	$5 \cdot 10^{10}$	80	0,1	$5\cdot 10^{-10}$
ДПиР, гетеродинное детектирование	104	PbSe	109	293	1	$3\cdot 10^{-15}$

Ослабление принимаемого сигнала, вызванное утечками CH₄, можно учесть в соответствии с табл. 2 с помощью экспоненциального множителя и фактора дальности $\exp(-2\tau_b) / R^2$, где $\tau_b = N_b \sigma_{abs} R$; N_b – фоновая концентрация метана.

Та	aб	л	И	ц	а	2
----	----	---	---	---	---	---

)

<i>R</i> , км	10 ⁻²	3,2.10-2	10^{-1}	3,2.10-1	10^{0}	$3,2.10^{0}$
$\exp(-2\tau_b)/R^2$	104	$7,8.10^{2}$	$4,5.10^{1}$	$8,0.10^{-1}$	3,4.10-4	7,6.10 ⁻¹³

3. Элементы теории непрерывных лидаров

При использовании частотного метода обработки в атмосферу излучается непрерывный сигнал, частота несущей или поднесущей которого изменяется чаще всего по линейному закону [3]. Для неподвижной цели на дальности *R* частота биений принимаемого и излученного сигналов

$$f_R = 2 R \Delta F F_m / c, \tag{10}$$

где ΔF – девиация частоты; F_m – частота модуляции.

Разрешающая способность по дальности определяется как

$$\Delta R = c \,\Delta F_f / 4 \,\Delta F \,F_m \,, \tag{11}$$

Р.Р. Агишев, Л.Р. Айбатов, Ю.Е. Польский

1626

где ΔF_f – полоса пропускания фильтра. Величина ΔR не может быть лучше $\Delta R = c / 4 \Delta F$, т.е. определяется девиацией частоты. Минимальная дальность также зависит только от ΔF и определяется точно так же. При этом среднеквадратическая методическая ошибка измерения дальности

$$\sigma_{R} = c \,\Delta F_{f} / 8 \,\sqrt{3} \,F_{m} \,\Delta F \,. \tag{12}$$

Оценим тактические параметры лидара, задавшись следующими величинами: $F_m = 200 \ \Gamma$ ц, $\Delta F = 7,5 \ M\Gamma$ ц, $f_{max} = 10 \ \kappa\Gamma$ ц, $\Delta F_f = 400 \ \Gamma$ ц. Тогда максимальная дальность $R_{max} = 1 \ \kappa$ м. Минимальная дальность и скачок показаний дальномера $R_{min} = 10 \ \kappa$ м. Потенциальная разрешающая способность $\Delta R = 10 \ \kappa$. Число каналов анализатора n = 25. Среднеквадратическая методическая ошибка $\sigma_R = 6 \ M$.

3.1. Нестабильность частоты и нелинейность закона модуляции

Оценим влияние нестабильности модулирующей поднесущей и нелинейности закона модуляции на выбор периода модуляции и периода накопления. Из (10) следует, что ошибка определения частоты биений, вызванная нестабильностью поднесущей, равна

$$\Delta f_{R_{us}} = 4 \,\Delta R_{us} \,\Delta F \,/\, c \,T_m \,, \tag{13}$$

где ΔR_{us} – ошибка измерения дальности из-за нестабильности поднесущей. С другой стороны, нестабильность частоты $\Delta F_{us}/\Delta T$ за время 2R/c может в худшем случае вызвать изменение частоты биений на величину

$$\Delta f_{R_{us}} = 2 R \Delta F_{us} / c \Delta T.$$
⁽¹⁴⁾

Из (13) и (14) следует, что

$$\Delta F_{us} / \Delta T = 2 \Delta R_{us} / R \Delta F / T_m.$$
⁽¹⁵⁾

Поэтому за период модуляции для максимальной дальности абсолютная нестабильность не должна превысить величины

$$\Delta F_{us} \le 2 \Delta R_{us} / R \Delta F / T_m.$$
⁽¹⁶⁾

Потребуем для определенности $\Delta R_{us} \leq 0,1 \Delta R$. Тогда

$$\Delta F_{\mu\nu} \le 0.2 \,\Delta R \,/\, R_{\rm max} \,\Delta F \,. \tag{17}$$

Рассмотрим влияние нелинейности закона модуляции поднесущей на точность определения текущей дальности. Из (10) следует, что при линейной ЛЧМ $\Delta F / T_m = U_0 = \text{const.}$ Очевидно, $\Delta f_{Rnl} = 4 R \Delta U / c$, где $\Delta U / U_0$ – относительное отклонение от линейности (относительная нелинейность). Нетрудно получить, что $\Delta R_{nl} = R \Delta U / U_0$.

Для определения требований к линейности частотной модуляции пусть $\Delta R_{\max nl} = 0,1 \Delta R$. В этом случае

$$\Delta U / U_0 = 0.1 \Delta R / R_{\text{max}}. \tag{18}$$

4. Экспериментальный макет газоанализатора

Макет ЛЧМ-ИК-лидара обеспечивал регистрацию атмосферных неоднородностей на расстоянии более 100 м. Лидар включает в себя (рисунок) излучающий блок, в котором использованы два Не–Ne-лазера *I* и 2, генерирующих в области 3,39 мкм. Модуляция излучения осуществляется с помощью электрооптического модулятора на кристалле Ge 3. Приемная оптика построена на базе зеркального телескопа 6 с фокусным расстоянием около 1 м и диаметром 150 мм. В качестве детектора ИК-излучения 7 использован фоторезистор на PbSe с термоэлектрическим охлаждением. На выходе фотоприемного устройства установлен анализатор спектра 8, сигналы с выхода которого детектируются 9, преобразуются в цифровую форму 11 и передаются для алгоритмической обработки в микроЭВМ 12.

Экспериментальная установка: 1, 2 – Не–Nе-лазеры, 3 – электрооптический модулятор, 4 – прерыватель, 5 – коллиматор, 6 – телескоп, 7 – PbSe-фоторезистор, 8 – анализатор спектра, 9 – детектор, 10 – мультиплексор, 11 – аналого-цифровой преобразователь, 12 – микрокомпьютер, 13 – дисплей, 14 – ЛЧМ-генератор, 15 – светодиод, 16 – германиевый фотодиод, 17 – синхронизатор, 18, 20 – пиродетекторы, 19 – ячейка СН₄

Заключение

Таким образом, описанная система представляется очень привлекательной, поскольку непрерывные газовые лазеры в десятки раз дешевле мощных импульсных твердотельных лазеров. Поэтому исследования и разработки непрерывных лидарных систем могут открыть новые перспективы дистанционного мониторинга атмосферы, например, методами лазерноиндуцированной флуоресценции, дифференциального поглощения и рассеяния и т.д.

- 1. Польский Ю.Е. // Оптика атмосферы. 1988. Т. 1. №8. С. 3–13.
- 2. А г и ш е в Р.Р. Защита от фоновой помехи в оптико-электронных системах контроля состояния атмосферы. М.: Машиностроение, 1994. 128 с.

3. Агишев Р.Р., Айбатов Л.Р., Иванов А.Н., Ильин Г.И., Польский Ю.Е. // IX Всесоюзн. симпозиум по лазерному и акустическому зондированию атмосферы. (Тезисы докл.). Томск: Изд. ИОА СО АН СССР, 1987. Ч. 2. С. 112–116.

- 4. Попов А.И., Садчихин А.В. //Журнал прикладной спектроскопии. 1991. Т. 55. №3. С. 426–430.
- 5. Abdullin R.M., Boiko S.A., Kotel'nikov S.B., Popov A.I.// XV International Laser Radar Conference. Part 2. July 23–27, 1990. Tomsk. P. 108–112.

6. Межерис Р. М. Лазерное зондирование атмосферы. М.: Мир, 1987. 380 с.

7. Лазерный контроль атмосферы / Подред. Э. Хинкли. М.: Мир, 1979. 416 с.

8. Kopeika N.S., Bordan'a J. // Proceedings of the IEEE. 1970. V. 58. №10. P. 1571–1577.

9. Barton D.K., Ward H.R. Handbook of radar measurement. New Jersey: Prentice Hall, 1969.

10. H u l m e K. F. // Optical and Laser Technology. 1982. V. 14. №4. P. 231–215.

Казанский государственный технический университет им. А.Н. Туполева

Поступила в редакцию 25 июля 1994 г.

R.R. Agishev, L.R. Aybatov, Ju.E. Pol'sky. CW-IR-Lidar for Remote Monitoring of the Natural Gas Leaks.

The assessments of limiting characteristics of CW-IR-lidar are presented in the paper as well as a comparison of different ways of the environment monitoring.

The energetics and accuracy characteristics of the systems under study are also observed. Principles of the CW-lidars designing are discussed.

Р.Р. Агишев, Л.Р. Айбатов, Ю.Е. Польский

1628