Том 36, номер 07, статья № 3

Лаврентьев Н. А., Родимова О. Б., Фазлиев А. З. Систематизация опубликованной научной графики, представляющей характеристики континуального поглощения водяного пара. III. Публикации 2001–2020 гг.. // Оптика атмосферы и океана. 2023. Т. 36. № 07. С. 541–556. DOI: 10.15372/AOO20230703.
Скопировать ссылку в буфер обмена
Аннотация:

Описаны графические ресурсы по континуальному поглощению водяного пара и его смесей, опубликованные в 2011–2020 гг. Представлены сводные таблицы, характеризующие основные параметры коэффициентов поглощения и функций пропускания в разных спектральных интервалах, температурную зависимость коэффициента поглощения и константу равновесия реакции образования димера воды. Отмечены особенности исследования континуального поглощения в опубликованных за эти годы работах.
В сжатой форме представлены результаты оценки качества цитируемых графиков, которые описаны четырьмя качественными и количественными атрибутами. Охарактеризованы три процедуры цитирования, две из которых компьютеризированы. Представлен метод оценки различия цитирующего и цитируемого графика и примеры пар «цитирующий и цитируемый графики» с количественной оценкой различия.

Ключевые слова:

информационная система GrafOnto, графики по континуальному поглощению воды, цитирующие и цитируемые графики, количественная оценка различия графиков

Список литературы:

1. Vaida V., Daniel J.S., Kjaergaard H.G., Goss L.M., Tuck A.F. Atmospheric absorption of near infrared and visible solar radiation by the hydrogen bonded water dimer // Quart. J. Roy. Meteorol. Soc. 2001. V. 127A, N 575. P. 1627–1643. DOI: 10.1002/qj.49712757509.
2. Cormier J.G., Ciurylo R., Drummond J.R. Cavity ringdown spectroscopy measurements of the infrared water vapor continuum // J. Chem. Phys. 2002. V. 116, N 3. P. 1030–1034. DOI: 10.1063/1.1425825.
3. Kuhn T., Bauer A., Godon M., Buhler S., Kunzi K. Water vapor continuum: Absorption measurements at 350 Hz and model calculations // J. Quant. Spectrosc. Radiat. Transfer. 2002. V. 74. P. 545–562. DOI: 10.1016/S0022-4073(01)00271-0.
4. Ma Q., Tipping R.H. The frequency detuning correction and the asymmetry of line shapes: The far wings of H2O–H2O // J. Chem. Phys. 2002. V. 116, N 10. P. 4102–4115. DOI: 10.1063/1.1436115.
5. Ma Q., Tipping R.H. Water vapor millimeter wave foreign continuum. A Lanczos calculation in the coordinate representation // J. Chem. Phys. 2002. V. 117, N 23. P. 10581–10596. DOI: 10.1063/1.1516792.
6. Бузыкин О.Г., Иванов С.В. Континуальное поглощение водяного пара в колебательно-неравновесных условиях // Оптика атмосф. и океана. 2003. Т. 16, № 3. С. 235–244.
7. Ma Q., Tipping R.H. A simple analytical parameterization for the water vapor millimeter wave foreign continuum // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 82. P. 517–531. DOI: 10.1016/S0022-4073(03)00175-4.
8. Tonkov M.V., Filippov N.N. Collision induced far wings of CO2 and H2O bands in IR spectra // Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere. Dordrecht: Springer. 2003. P. 125–136. DOI: 10.1007/978-94-010-0025-3_10.
9. Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm-1: Evidence for water dimers // Quart. J. Roy. Meteorol. Soc. 2004. V. 130A, N 602. P. 2391–2408. DOI: 10.1256/qj.03.178.
10. Несмелова Л.И., Родимова О.Б., Творогов С.Д. Коэффициент поглощения водяного пара при различных температурах // Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия / под общ. ред. Л.Н. Синицы и Е.А. Виноградова. Томск: Изд-во ИОА СО РАН, 2004. С. 413–436.
11. Sierk B., Solomon S., Daniel J.S., Portmann R.W., Gutman S.I., Langford A.O., Eubank C.S., Dutton E.G., Holub K.H. Field measurements of water vapor continuum absorption in the visible and near-infrared // J. Geophys. Res. 2004. V. 109. D08307. DOI: 10.1029/2003JD003586.
12. Cormier J.G., Hodges J.T., Drummond J.R. Infrared water vapor continuum absorption at atmospheric temperatures // J. Chem. Phys. 2005. V. 122, N 11. P. 114309. DOI: 10.1063/1.1862623.
13. Podobedov V.B., Plusquellic D.F., Fraser G.T. Investigation of the water-vapor continuum in the THz region using a multipass cell // J. Quant. Spect. Radiat. Transfer. 2005. V. 91. P. 287–295. DOI: 10.1016/j.jqsrt.2004.05.061.
14. Vigasin A.A., Pavlyuchko A.I., Jin Y., Ikawa S. Density evolution of absorption band shapes in the water vapor OH-stretching fundamental and overtone: Evidence for molecular aggregation // J. Mol. Struct. 2005. V. 742, N 1–3. P. 173–181. DOI: 10.1016/j.molstruc.2004.12.060.
15. Bicknell W.E., Cecca S.D., Griffin M.K., Swartz S.D., Flusberg A. Search for low-absorption regions in the 1.6- and 2.1-mm atmospheric windows // J. Directed Energy. 2006. V. 2. P. 151–61.
16. Scribano Y., Goldman N., Saykally R.J., Leforestier C. Water dimers in the atmosphere III: Equilibrium constant from a flexible potential // J. Phys. Chem. A. 2006. V. 110. P. 5411–5419. DOI: 10.1021/jp056759k.
17. Scribano Y., Leforesier C. Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum // J. Chem. Phys. 2007. V. 126, N 23. P. 234301-1–234301-12. DOI: 10.1063/1.2746038.
18. Baranov Y.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm-1 spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 2291–2302. DOI: 10.1016/j.jqsrt.2008.03.004.
19. Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128. P. 124313-1–124313-17. DOI: 10.1063/1.2839604.
20. Podobedov V.B., Plusquellic D.F., Siegrist K.E., Fraser G.T., Ma Q., Tipping R.H. New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 458–467. DOI: 10.1016/j.jqsrt.2007.07.005.
21. Lee M.S., Baletto F., Kanhere D.G., Scandolo S. Far-infrared absorption of water clusters by first-principles molecular dynamics // J. Chem Phys. 2008. V. 128, N 21. P. 214506-1–214506-5. DOI: 10.1063/1.2933248.
22. Ptashnik I.V. Evidence for the contribution of water dimers to the near-IR water vapour self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 831–852. DOI: 10.1016/j.jqsrt.2007.09.004.
23. Serio C., Guido M., Esposito F., Di Girolamo P., Di Iorio T., Palchetti L., Bianchini G., Muscari G., Pavese G., Rizzi R., Carli B., Cuomo V. Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the Н2О rotational band from 240 to 590 cm-1 // Opt. Express. 2008. V. 16, N 20. P. 15816–15833. DOI: 10.1364/OE.16.015816.
24. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293 and 351 K // J. Geophys. Res. 2009. V. 114. P. D21301. DOI: 10.1029/2008JD011355.
25. Rowe P.M., Walden V.P. Improved measurements of the foreign-broadened continuum of water vapor in the 6.3 mm band at -30 °C // Appl. Opt. 2009. V. 48, N 17. P. 1358–1365. DOI: 10.1364/AO.48.001358.
26. Leforestier C., Tipping R.H., Ma Q. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption // J. Chem. Phys. 2010. V. 132, N 16. P. 164302. DOI: 10.1063/1.3384653.
27. Baranov Yu.I. The continuum absorption in H2O + N2 mixtures in the 3–5 mm spectral region at temperatures from 326 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2281–2286. DOI: 10.1016/j.jqsrt.2011.06.005.
28. Baranov Yu.I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1304–1313. DOI: 10.1016/j.jqsrt.2011.01.024.
29. Koshelev M.A., Serov E.A., Parshin V.V., Tretyakov M.Yu. Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2704–2712. DOI: 10.1016/j.jqsrt.2011.08.004.
30. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303. DOI: 10.1016/j.jqsrt.2011.01.012.
31. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments // J. Geophys. Res. 2011. V. 116. D16305. DOI: 10.1029/2011JD015603.
32. Baranov Yu.I., Buryak I.A., Lokshtanov S.E., Lukyanchenko V.A., Vigasin A.A. H2O–N2 collision-induced absorption band intensity in the region of the N2 fundamental: Ab initio investigation of its temperature dependence and comparison with laboratory data // Philos. Trans. R. Soc. A. 2012. V. 370. P. 2691–2709. DOI: 10.1098/rsta.2011.0189.
33. Baranov Yu.I., Lafferty W.J. The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm-1 atmospheric windows // Philos. Trans. R. Soc. A. 2012. V. 370. P. 2578–2589. DOI: 10.1098/rsta.2011.0234.
34. Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. Water vapor continuum absorption in the 8–12 and 3–5 mm atmospheric transparency windows // Atmos. Ocean. Opt. 2012. V. 25, N 1. P. 71–76. DOI: 10.1134/S102485601201006X.
35. Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.C. Development and recent evaluation of the MT_CKD model of continuum absorption // Philos. Trans. R. Soc. A. 2012. V. 370. P. 2520–2556. DOI: 10.1098/rsta.2011.0295.
36. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements // Philos. Trans. R. Soc. A. 2012. V. 370. P. 2557–2577. DOI: 10.1098/rsta.2011.0218.
37. Климешина Т.Е., Родимова О.Б. Изменение контура линии в крыле от полосы к полосе в случае Н2О и СО2 // Оптика атмосф. и океана. 2013. Т. 26, № 1. С. 18–23.
38. Klimeshina T.E., Rodimova O.B. Temperature dependence of the water vapor continuum absorption in the 3–5 mm spectral region // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 119. P. 77–83. DOI: 10.1016/j.jqsrt.2012.12.020.
39. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 381–391. DOI: 10.1016/j.jqsrt.2013.07.006.
40. Ptashnik V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35. DOI: 10.1016/j.jqsrt.2013.02.016.
41. Slocum D.M., Slingerland E.J., Giles R.H., Goyette T.M. Atmospheric absorption of terahertz radiation and water vapor continuum effects // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 127. P. 49–63. DOI: 10.1016/j.jqsrt.2013.04.022.
42. Tretyakov M.Yu., Serov E.A., Koshelev M.A., Parshin V.V., Krupnov A.F. Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature // Phys. Rev. Lett. 2013. V. 110, N 9. P. 093001-1–093001-4. DOI: 10.1103/PhysRevLett.110.093001.
43. Mondelain D., Manigand S., Kassi S., Campargue A. Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 mm transparency window // J. Geophys. Res.: Atmos. 2014. V. 119, N 9. P. 5625–5639. DOI: 10.1002/2013JD021319.
44. Пташник И.В., Петрова Т.М., Пономарев Ю.Н., Солодов А.А., Солодов А.М. Континуальное поглощение водяного пара в окнах прозрачности ближнего ИК-диапазона // Оптика атмосф. и океана. 2014. Т. 27, № 11. С. 970–975.
45. Третьяков М.Ю., Кошелев М.А., Серов Е.А., Паршин В.В., Одинцова Т.А., Бубнов Г.М. Димер воды и атмосферный континуум // Успехи физ. наук. 2014. Т. 184, № 11. С. 1199–1215.
46. Serov E.A., Koshelev M.A., Odintsova T.A., Parshin V.V., Tretyakov M.Yu. Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188–258 Hz range // Phys. Chem. Chem. Phys. 2014. V. 16. P. 26221–26233. DOI: 10.1039/c4cp03252g.
47. Shine K.P., Ptashnik I., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2014. V. 33, N 3–4. P. 1–21. DOI: 10.1007/s10712-011-9170-y.
48. Klimeshina T.E., Rodimova O.B. Water-vapor foreign-continuum absorption in the 8–12 and 3–5 mm atmospheric windows // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 161. P. 145–152. DOI: 10.1016/j.jqsrt.2015.04.005.
49. Mondelain D., Vasilchenko S., Cermak P., Kassi S., Campargue A. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 mm // Phys. Chem. Chem. Phys. 2015. V. 17, N 27. P. 17762–17770. DOI: 10.1039/C5CP01238D.
50. Пташник И.В. Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы // Оптика атмосф. и океана. 2015. Т. 28, № 5. С. 443–459. DOI: 10.15372/AOO20150508.
51. Rodimova O.B. Continuum water vapor absorption in the 4000–8000 cm-1 region // Proc. SPIE. 2015. V. 9680. P. 968002. DOI: 10.1117/12.2205332.
52. Tretyakov M.Yu., Sysoev A.A., Odintsova T.A., Kyuberis A.A. Collision-induced dipole moment and millimeter and submillimeter continuum absorption in water vapor // Radiophys. Quantum Electron. 2015. V. 58, N 4. P. 262–276. DOI: 10.1007/s11141-015-9600-7.
53. Baranov Yu.I. On the significant enhancement of the continuum-collision induced absorption in H2O + CO2 mixtures // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 175. P. 100–106. DOI: 10.1016/j.jqsrt.2016.02.017.
54. Bogdanova J.V., Rodimova O.B. The water vapor absorption in the long wave wing of the rotational band // Proc. SPIE. 2016. V. 10035. P. 1003506. DOI: 10.1117/12.2249129.
55. Campargue A., Kassi S., Mondelain D., Vasilchenko S., Romanini D. Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model // J. Geophys. Res.: Atmos. 2016. V. 121. P. 13180–13203. DOI: 10.1002/2016JD025531.
56. Reichert A. Quantification of the infrared water vapor continuum by atmospheric measurements // Dissertation an der Fakultät für Physik der Ludwig-Maximilians-Universit ät Munchen angefertigt am Karlsruher Institut für Technologie (KIT). Institut für Meteorologie und Klimaforschung Atmospharische Umweltforschung (IMK-IFU) Garmisch-Partenkirchen vorgelegt von Andreas Reichert aus Kosching Munchen. 24.10.2016.
57. Shine K.P., Campargue A., Mondelain D., McPheat R.A., Ptashnik I.V., Weidmann D. The water vapour continuum in near-infrared windows – current understanding and prospects for its inclusion in spectroscopic databases // J. Mol. Spectrosc. 2016. V. 327. P. 193–208. DOI: 10.1016/j.jms.2016.04.011.
58. Simonova A.A., Ptashnik I.V. Estimation of water dimers contribution to the water vapour continuum absorption within 0.94 and 1.13 mm bands // Proc. SPIE. 2016. V. 10035. P. 100350K. DOI: 10.1117/12.2249458.
59. Odintsova T.A., Tretyakov M.Yu., Pirali O., Roy P. Water vapor continuum in the range of rotational spectrum of H2O molecule: New experimental data and their comparative analysis // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 187. P. 116–123. DOI: 10.1016/j.jqsrt.2016.09.00.
60. Richard L., Vasilchenko S., Mondelain D., Ventrillard I., Romanini D., Campargue A. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 mm transparency windows // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 201. P. 171–179. DOI: 10.1016/j.jqsrt.2017.06.037.
61. Serov E.A., Odintsova T.A., Tretyakov M.Yu., Semenov V.E. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 193. P. 1–12. DOI: 10.1016/j.jqsrt.2017.02.011.
62. Lechevallier L., Vasilchenko S., Grilli R., Mondelain D., Romanini D., Campargue A. The water vapour self-continuum absorption in the infrared atmospheric windows: New laser measurements near 3.3 and 2.0 mm // Atmos. Meas. Technol. 2018. V. 11. P. 2159–2171. DOI: 10.5194/amt-11-2159-2018.
63. Odintsova T., Tretyakov M.Yu., Zibarova A.O., Pirali O., Roy P., Campargue A. Far-infrared self-continuum absorption of H216O and H218O (15–500 cm-1) // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 227. P. 190–209. DOI: 10.1016/j.jqsrt.2019.02.01.
64. Ptashnik I., Klimeshina T.E., Solodov A.A., Vigasin A.A. Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 mm bands // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 228. P. 97–105. DOI: 10.1016/j.jqsrt.2019.02.024.
65. Tran H., Turbet M., Hanoufa S., Landsheere X., Chelin P., Ma Q., Hartmann J.-M. The CO2-broadened H2O continuum in the 100–1500 cm-1 region. Measurements, predictions, and empirical model // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 230. P. 75–80. DOI: 10.1016/j.jqsrt.2019.03.016.
66. Vasilchenko S., Campargue A., Kassi S., Mondelain D. The water vapour self- and foreign-continua in the 1.6 mm and 2.3 mm windows by CRDS at room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 227. P. 230–238. DOI: 10.1016/j.jqsrt.2019.02.016.
67. Birk M., Wagner G., Loos J., Shine K.P. 3 mm water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 253. P. 107134(1–22). DOI: 10.1016/j.jqsrt.2020.107134.
68. Mondelain D., Vasilchenko S., Kassi S., Campargue A. The water vapor foreign-continuum in the 1.6 mm window by CRDS at room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 246. P. 106923(1–7). DOI: 10.1016/j.jqsrt.2020.106923.
69. Lavrent’ev N.A., Rodimova O.B., Fazliev A.Z. Systematization of published scientific graphics characterizing the water vapor continuum absorption. I. Publications of 1898–1980 // Proc. SPIE. 2018. V. 10833. P. 108330A-9. DOI: 10.1117/12.2504325.
70. Лаврентьев Н.А., Родимова О.Б., Фазлиев А.З. Систематизация опубликованной научной графики, представляющей характеристики континуального поглощения водяного пара. II. Публикации 1981–2000 гг. // Оптика атмосф. и океана. 2022. Т. 35, № 3. С. 217–231. DOI: 10.15372/AOO20220307.
71. Akhlestin A.Yu., Lavrentiev N.A., Rodimova O.B., Fazliev A.Z. The continuum absorption: Trust assessment of published graphical information // Proc. SPIE. 2019. V. 11208. P. 112080P. DOI: 10.1117/12.2541741
72. Tretyakov M.Yu., Krupnov A.F., Koshelev M.A., Makarov D.S., Serov E.A., Parshin V.V. Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range // Rev. Sci. Instrum. 2009. V. 80, N 9. P. 093106-1–093106-10. DOI: 10.1063/1.3204447.74.
73. Пташник И.В. Димеры воды: «неизвестный» эксперимент // Оптика атмосф. и океана. 2005. Т. 18, № 4. С. 359–362.
74. Vigasin A.A. Bound, metastable and free states of bimolecular complexes // Infrared Phys. 1991. V. 32. P. 461–470.
75. Stogryn D.E., Hirschfelder J.O. Contribution of bound, metastable, and free molecules to the second virial coefficient and some properties of double molecules // J. Chem. Phys. 1959. V. 31, N 6. P. 1531–1545.
76. Несмелова Л.И., Родимова О.Б., Творогов С.Д. Контур спектральной линии и межмолекулярное взаимодействие. Новосибирск: Наука, 1986. 216 с.
77. Богданова Ю.В., Климешина Т.Е., Родимова О.Б. Димерное поглощение в ИК-полосах водяного пара // Оптика атмосф. и океана. 2019. Т. 32, № 10. С. 801–807.
78. Богданова Ю.В., Родимова О.Б. Соотношение между поглощением мономерами и димерами водяного пара в пределах вращательной полосы Н2О // Оптика атмосф. и океана. 2018. Т. 31, № 5. С. 341–348.
79. Лаврентьев Н.А., Фазлиев А.З. Метод количественной оценки качества цитирования научных графиков // Сборник трудов российской конференции с международным участием «Распределенные информационно-вычислительные ресурсы (DICR-2022)». Россия. г. Новосибирск, 5–8 декабря 2022 г. / под ред. С.А. Рылова, Ю.И. Молородова, А.А. Жирнова, Ю.Н. Синявского. Новосибирск: 2022. DOI: 0.25743/DIR.2022.24.51.022.
80. Roberts R.E., Selby J.E.A., Biberman L.M. Infrared continuum absorption by atmospheric water vapor in the 8–12-mm window // Appl. Opt. 1976. V. 15, N 9. P. 2085–2090. DOI: 10.1364/AO.15.002085.
81. Ma Q., Tipping R.H. A near-wing correction to the quasistatic far-wing line shape theory // J. Chem. Phys. 1994. V. 100, N 4. P. 2537–2546. DOI: 10.1063/1.466502.
82. Tipping R.H., Ma Q. Theory of the water continuum and validations // Atmos. Research. 1995. V. 36, N 1–2. P. 69–94. DOI: 10.1016/0169-8095(94)00028-C.
83. Burch D.E. Absorption by H2O in narrow windows between 3000–4200 cm-1. Report AFGL-TR-85-0036 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, USA, Massachusetts. 1985. P. 37.