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Formulas for reflection coefficient (reflectance) of widespread small-size optics (television, 
video and photo cameras, binoculars, etc.) are derived, in which the receiver plays a part of the 
reflector. A generalized Airy formula is derived taking into account the phase shifts due to the surface 
curvature. It is shown that the front (input) surface of the objective is the main contributor to 
reflection coefficient of the small-size optics. This surface is usually an air–crown interface with 
reflectance of approximately 4%. The reflection coefficient of such optics, in its shape, coincides with 
the typical initial condition for the Gaussian beam. It is shown that the plane wave, incident on the 
small-size optics, is reflected in the form of a spherical wave. 

 
In connection with the rapid development of 

optical observation systems, of interest is the question 
of reflection properties of observation devices themselves, 
when photoreceivers are considered as reflectors. In 

this paper, formulas for reflection coefficient of the 

widespread small-size optics (television, video and 
photo cameras, binoculars, etc.) are derived. Elements 

of this optics (objectives, oculars, prisms, etc.) are 
usually a combination of crown–flint glasses. 

Based on the earlier results,1,2 formulas for  
the reflection coefficient of actual optical systems,  
from which flares can be obtained, are analyzed 

theoretically. Of concern were the visible and, as a 
more interesting, near IR ranges. 

First, let us give some definitions and derive 
formulas for the reflection coefficient from one 
interface. Estimate the coefficient of reflection from 
interface of typical media, used in traditional optical 
devices, namely air–glass and glass–glass. Then 

consider formulas for the reflection coefficient of 
multilayer media. These media have many interfaces 
in their interior. Obtain numerical estimates for the 
reflection coefficient of widespread optical systems. 
  It is well known that if an optical wave is 
incident on the interface of two homogeneous media 
with different optical properties, it is split into two 
waves: refracted (passing to the second medium) and 
reflected. Denote through θ1 the angle of wave 

incidence upon interface from the first medium 

(numbered by 1, Fig. 1). The incidence angle is the 
angle between the normal to the phase front of the 

wave and the normal to the interface surface. The 

incidence plane is the plane passing through both 

normals. In the second medium the wave propagates at 
the refraction angle θ2 (angle between the same normals 
but in medium 2, Fig. 1). The reflection angle is in the 
incidence plane and equals the incidence angle. The 
absolute refraction index nk of the medium numbered 
by k is the index of refraction from vacuum to this 
medium. It is equal to the ratio of the light speed to 
the phase speed of the wave propagation in the medium 
k. The absolute refractive index n is connected with 

the medium dielectric (ε) and magnetic (μ) constants 
through the Maxwell formula n2

 = εμ. For transparent 
media, the magnetic constant practically does not 
differ from unity. 

 

1 

2 

3 

h 

θ1

θ2 

 θ3 

n3 = 

3ε

n2 = 

2ε

n1 = 

1ε
 

 
Fig. 1. Optical wave incidence and refraction at plane 
interfaces.2 

 

According to geometric optics laws, the angles of 
incidence θ1 

and refraction θ2 are related by the law of 
refraction (or the Snell’s law): n1 

sinθ1 = n2 

sinθ2, where 

n1 

and n2 

are absolute refractive indices of media 1  

and 2. For small incidence angles θ1 (when sinθ1 ≈ θ1), 
the refraction law is simplified to n1θ1 = n2θ2, and, 
correspondingly, for multilayer media n1θ1 = n2θ2 = 
= … = nkθk. When n2 > n1, the optical depth of the 
second medium is said to be larger than the optical 
depth of the first medium. In this case, it follows 
from the refraction law that sinθ2< sinθ1, since for 
each incidence angle θ1 there is a real refraction angle 

θ2. However, if the second medium is optically 
thinner than the first medium (n2 < n1), then the real 
value of θ2 can be obtained only for such incidence 
angles θ1, for which sinθ1 < n2 

/n1. For instance, if 
the second medium is air or vacuum (n2 = 1), and the 
first medium is the glass with a typical refractive 
index (n1 = 1.5), the real value of θ2 is obtained for 

incidence angles θ1 ≤ θR = arcsin
 

(n2 

/n1) = 41.8°. For 
large angles θ1 (θ1 > θR 

), a so-called total internal 
reflection takes place. 
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Consider formulas for coefficient of reflection 

from one interface. The electric vector of the incident 
wave field is decomposed into two components: 
parallel (||

 

) and perpendicular (⊥
 

) to the incidence 
plane. Then, the reflection coefficients with respect  
to the field (respectively r|| and r⊥ 

for these two 

components) are defined by the Fresnel formulas 
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In general case, these coefficients are complex. 
The squared modulus of the reflection coefficient with 
respect to the radiation intensity is usually called the 
reflectance. Therefore, for each of two components of 
the electric vector the reflectances R|| and R⊥ can be 
represented in the form R|| = | r|| |

2, R⊥ = | r⊥ |2. For the 
normal incidence (θ1 = θ2 = 0), the difference between 
parallel and perpendicular components disappears, and 
it follows from the Fresnel formula  

 R|| = R⊥ = [(n2 – n1)/(n2 + n1)]
2. (2) 

It is seen that R||, R⊥ → 0 at n2 → n1. Hence, the less is 
the difference in the optical density of both media, the 

less is the energy carried away by the reflected wave. 
  Using the refraction law, the Fresnel formulas 
can be rewritten as: 
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The denominators in Eq. (3) are finite except 
when θ1 

+
 

θ2 

=
 

π/2. Then tan
 

(θ1 

+
 

θ2) 

=
 

∞ and, hence, 
R|| = 0. In this case, the reflected and refracted  
beams are perpendicular; and it follows from the 
refraction law (since sinθ2 = sin(π/2 – θ1) = cosθ1) 
that tanθ1 = n2 

/n1. The angle defined by this formula 
is called the Brewster angle or the angle of the total 
polarization. If light falls at this angle, the electric 
vector of the reflected wave has no component in the 
incidence plane (R|| = 0). 

Figure 2 (Ref. 2) shows the dependence of the 
reflectance of the interface “air – typical glass” (n1 = 1, 
n2 = 1.52) on the incidence angle θ1 (θ2 is the refraction 
angle). The zero value of R|| on curve 3 corresponds to 
the Brewster angle θÂ = arctan

 

(1.52) = 56°40′. 
If the electric vector of the incident beam forms 

the angle α with the incidence plane, the total 
reflectance R of the interface is readily expressed in 
terms of the reflectance of mutually perpendicular 
components: 

 R = R|| cos2α + R⊥ sin
2α. (4) 

For the natural light emitted by a heated body, 
as well as for the unpolarized laser radiation, the 
direction of oscillations in the wave rapidly changes 
in an irregular, random manner. The corresponding 
total reflectance R can be obtained by averaging over 
all directions. Since the means of cos2α and sin2α are 

1/2, we deduce from Eq. (4) that R = (R|| + R⊥ 

)/2. 
Also shown in Fig. 2 (curve 2) is the dependence of 

the total reflectance of glass on the incidence angle. 
As is seen, the total reflectance of glass practically 
does not depend on the incidence angle in the 
considerable interval of the angles θ1 (R = 0.04 from 
0 to 40–50°). This interval of the incidence angles is 
sufficient for estimates of the reflection coefficient of 
actual optical systems. Angles θ1 larger 40–50° can be 
omitted because the reflection angle is equal to the 
incidence angle (incidence of the wave becomes 

increasingly sliding). Data of Fig. 2 allow the 

estimation of R of one interface for typical media. In 
this case, formula (2) can be used at particular values 
of the refractive index. 
 

 

 

 

 
        θ1 = 0°        20°       40°       60°       80° 

Fig. 2. Dependence of the reflectance R of glass with  
the refractive index 1.52 on the incidence angle θ1: R⊥ (1), 
R = (R|| + R⊥)/2 (2); and R|| (3). 

 

Table (Ref. 3) and Figure 3 (Ref. 2) present the 
refractive indices of different optical materials in  
the near IR region (λ = 0.80–1.1 μm). The dispersion 
dependence of the refractive index on the wavelength 
(Fig. 3) is weak for broadband optical receivers usually 
applied in practice. Traditional optical devices commonly 
use crown and flint glasses. As it follows from Table, 
the refractive index of crown glasses is less than that of 
flint glasses (on the average, 1.53 and 1.67, respectively). 
Therefore, the average reflectance R of the air– 
glass interface is 4.4% for crown glasses and 6.3% for 

flint glasses; correspondingly, minimum (maximum) 

reflectance is 3.5% (5.5%) for crown glasses and 5.5% 

(7.2%) for flint glasses. The reflectance is 0.19% for 
the interface “mean crown – mean flint,” 0.24% for the 

interface “minimal crown – maximal crown” (or 

“minimal crow – minimal flint”), and 0.72% for the 
interface “minimal crown – maximal flint.” It is clearly 

seen that the reflectance of the interface “air – glass” 
is much higher than that of the interface “glass – 
glass.” The flint glasses are on the average much more 
expensive than the crown ones. Therefore, in production 
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of widespread optical devices, the flint is often 
replaced by the crown. 
 

Refractive index n of optical materials  
in the near IR region (at λ = 0.80–1.1 μm) 

Material n 

Glass:  
crown 1.46–1.61 
flint 1.61–1.73 
quartz 1.449–1.452 

Crystalline quartz 1.53–1.54 
Electro-optical materials 1.51–1.52 
Iceland spar 1.64–1.65 
Optical crystals 1.4–2.4 

 
 

I

II

III

IV

 

V 

n 1.7 

 

 

 

1.65 

 

 

 

1.6 

 

 

 

1.55 

 

 

 

1.5 

4000        5000         6000         7000 

λ, Å  
Fig. 3. Typical dispersions for glasses of different grades: 
heavy flint (I); heavy baric crown (II); light flint (III); 
heavy crown (IV); and borosilicate crown (V). 
 

Now we can derive formulas for coefficient of 
reflection from multilayer media. These media contain 
many interfaces in their interior and are used in 

traditional optical systems. In practice, of the most 
use are refracting optical systems (refractors). 
Reflecting systems (reflectors) are commonly used in 
specialized devices (such as mirror telescopes) and are 
rarer in occurrence. 

Traditional optical systems comprise: objectives, 
oculars, condensers, prisms, splitting plates, stops, 
etc. In turn, these elements themselves are frequently 
composite. For instance, objectives generally consist 
of collecting and dispersing lenses. Figures 4 and 5 
present schemes of most typical objectives.2 

The quality of an objective can be improved by 
reducing its total reflectance in a special way. Usually, 
this is achieved by spraying thin dielectric films onto 
its input surface (anti-reflectance optics) or by 

choosing a combination of lenses (often not thin), 
fabricated from glasses with different refractive 

indices. The general rule of decreasing the objective 

reflectance consists in decreasing abrupt changes in 
the refractive index when passing from the front 
boundary to the back one. Both these boundaries are 
usually in contact with air. 

 

Crown
 

 Flint 

 
Fig. 4. Objective in the form of glued achromatic doublet. 

 

 
 a b 

 
 c d 

Fig. 5. Types of objectives: Planar (à); Zeiss biotar (b); 
Cooke triplet (c); Zonnar (d). 

 
Jumps of the refractive index inside the objective 

decrease when the refractive indices of the front and 
back lenses are less than those of the center lenses. 
Therefore, the front and back lenses are frequently 
produced from crown glasses, while the center ones 
from flint glasses. Simple objectives (see Fig. 4), can 
be free of back lenses. Elements of the objective are 
generally glued together by special transparent glue 
in order to remove air gaps between them, which 
deteriorate the lens quality. The objectives with air 
gaps inside are applied, when, for example, it is 
necessary to widen the field of view due to somewhat 
longer inter-lens separation or to remove some 
aberrations. Such objectives are more specialized and 
used more rarely. 

The characteristics of wave reflection from media 
with many interior interfaces can be estimated in 
terms of the theory of wave propagation in layered 
media.1 This theory uses the notion of the medium 
impedance (i.e., the wave resistance, defined as the 
ratio of tangent components of electric and magnetic 
fields). For instance, if the electric vector of the 
incident wave field is perpendicular to the incidence 
plane (⊥), the impedance Zk of the kth medium is 
defined as Zk⊥ = 1/(nk 

cosθk), where θk is the angle in 
the kth medium (see Fig. 6, where k = n). 

In the case that the electric vector is parallel to 
the incidence plane (||), then Zk|| = cosθk/nk. Note that 
the reflection coefficient with respect to the field of 
interface between the (k + 1)th and kth media (wave 
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incidence from the (k + 1)th medium to the kth 
medium) can be represented in the form 

 

 r k, k + 1 = (Zk – Zk + 1)/( Zk + Zk + 1). (5) 

Assuming k = 1 in Eq. (5) (wave incidence from the 
medium 2 to the medium 1), substituting the indicated 
formulas for impedances Zk⊥ and Zk|| in this equality, 
and taking into account the opposite ordering of layers 
in Figs. 1 and 6, we obtain Fresnel formulas (1), 
where r = r 1, 2. 
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Fig. 6. Scheme of reflections and refractions in a system of 
plane layers. 

 

The notion of impedance permits a substantial 
simplification of the formulas obtained for the 

reflection coefficient of the system of plane layers. 
Thus, if there is one reflecting layer (n = 2 in Fig. 6; 
in the general case, n + 1 is the total number of media, 
n is the number of interfaces, n – 1 is the number of 
reflecting layers, and the media 1 and n + 1 extend to 
infinity), the reflection coefficient with respect to the 
field r 

L

1  is expressed through the impedance Z3 and 

input impedance of one layer Z 

(2)
in : 

 
(2)
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–
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.
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Here, β2 = k0 

n2 

d2 

cosθ2, where k0 = 2π/λ is the 
wavenumber in vacuum; d2 is the layer thickness 
(thickness of the second medium, Fig. 6); n2 and θ2 

are the refractive index and the angle in medium 2. In 
the case, when the refractive indices of the media 1 and 

2 are identical (Z1 = Z2, Z 

(2)
in  = Z2), the layer defined 

by the medium 2 can be considered absent. Therefore, 
following Eq. (5), we have that r 

L

1  = r2, 3, i.e., the 
reflection coefficient of the absent layer coincides 
with the reflection coefficient of one interface. 
Reducing the number of interfaces by one (n = 1) and 

denoting through r 

L

0  the reflection coefficient for the 
no-layer case we have r 

L

0  = r1, 2. 
The coefficient of reflection from n – 1 layers r 

L

n–1 
is expressed via the impedance Zn+1 and the input 
impedance of n – 1 layers Z 

(n)
in : 
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where βn = k0 

nn 

dn 

cosθn. Formula (6) for the reflection 
coefficient of n – 1 layers r 

L

n–1 coincides in the form 
with formula (5) for the reflection coefficient of the 
interface rn, n+1 between media n and n + 1 provided 
that in Eq. (5) the impedance Zn is replaced by the 
input impedance Z 

(n)
in . Applying in formulas (6) the 

equality following from the definition of tan, and 
taking into consideration Eq. (5), we finally obtain 
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.
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L

n n n nL
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r

r r i

+ −
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+ β
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Formula (7) is called the Airy formula; it is a 
recurrence relation, making it possible, at the known 
reflection coefficient of the interface between n + 1 and 
n media (rn, n+1), to express the reflection coefficient 

of n – 1 layers (r 

L

n–1) through the reflection coefficient 
of the less by one number of layers (n – 2 layers, r 

L

n–2). 
The Airy formula should be supplemented with the 
initial condition r 

L

0  = r1, 2, corresponding to r 

L

–1 = 0. 
  The reflectance of the system of n – 1 layers R 

L

n–1 

(or the reflection coefficient with respect to intensity), 
like for one interface, is the squared modulus of the 
reflection coefficient over the field. Based on the 
Airy formula, we can find the reflectance of a single 
layer R 

L

1 . Assuming n = 2 in Eq. (7), and taking into 
account that r 

L

0  = r1, 2, we have 

 

2 2
1,2 2,3 1,2 2,3 2

1 2 2
1,2 2,3 1,2 2,3 2

2 cos(2 )
.

1 2 cos(2 )

L r r r r
R

r r r r

+ + β
=

+ β
 (8) 

This formula corresponds to any single component 
(either ⊥, or || ) of the field electric vector. The choice 
of a particular component is determined by particular 
values of impedances (either Zk⊥, or Zk|| ). 

The oscillating character of the layer reflectance is 

seen from formula (8) at variations of β2 = k0 

n2 

d2 

cosθ2, 

which is a periodic function of the layer thickness; 
this phenomenon is confirmed experimentally and 
serves as a basis for optics anti-reflectance. 

Figure 7 (Ref. 2) shows the reflectance of a 
dielectric film (one layer with refractive index n2 and 
thickness h = d2) as a function of its optical depth 

n2 

h for normal incidence (θ3 = θ2 = θ1 = 0). The wave 
falls from air, passes through the film, and penetrates 
the glass with a refractive index of 1.5 (following the 
numbering in Fig. 6, n3 = 1, n1 = 1.5). It is seen that 
for the film with optical thickness of λ/4, 3λ/4, 
5λ/4, …, the reflectance reaches its maximum 

(minimum) depending on whether the refractive 
index of the film is larger (less) than that of the  
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last medium. For the film with optical thickness of  
λ/2, 2λ/2, 3λ/2, …, the converse is true. Quarter-
wavelength film (with n2 < n1) is commonly used as 
an anti-reflection one. Figure 8 (Ref. 1) presents the 
wavelength dependence (for normal incidence, with the 

last medium being a flat glass) of the reflectance of 
typical multilayer anti-reflective coatings. As follows 
from Fig. 8, the reflectance of the anti-reflective 

coatings in the visible range (λ = 0.45–0.6 μm) is 
minimal. When passing to the near IR (λ > 0.6 μm) it 
grows (anti-reflectance disappears). However, even in 
the case of total loss of the anti-reflectance, the 

reflectance at the boundary of IR range (λ = 0.7 μm) 

does not exceed 4%. The largest reflection of good 

(two- and three-layer) anti-reflective coatings is 
observed on the border with UV region (λ < 0.43 μm). 
For this reason, as an example, the objectives of 
high-quality anti-reflection photo cameras have a 
violet tinge. 
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Fig. 7. Reflectance (R = R 

L

1⊥ ) of dielectric film with 
refractive index n2 as a function of its optical depth n2h: 
θ3 = 0, n3 = 1, n1 = 1.5. 
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Fig. 8. Reflectance of typical anti-reflective coatings:  
one- (1), two- (2), and three- (3) layer coatings. 
 

Demonstrate how the Airy formula (7) can be 
used to obtain simple estimates of the reflectance of 
multilayer media contained in traditional optical 

systems. Considering that the reflectance of the 

interfaces air – glass and glass – glass, as was shown 
above, makes a few percent, and that r 

L

n–2 exp(i2βn) 

does not exceed unity in the absolute value, let us 

expand the denominator in formula (7) in powers of 
rn, n+1 

r 

L

n–2 exp(i2βn). Retaining only the first term of 
the expansion, we obtain 

 r 

L

n–1 = rn, n+1 + r 

L

n–2 

exp(i2βn) + 

 + O(r 

L

n–2 rn, n+1
2) + O(rn, n+1 

r 

L

n–2
2). (9) 

When | r 

L

n–2 | → 1, the omitted terms O(rn,n+1 

r 

L

n–2
2) in 

Eq. (9) may be of the same order as the first term 

rn, n+1 retained in Eq. (9). However, in this case, as is 
seen from Eq. (9), rn, n+1 

itself plays a role of small 
corrector. Hence, the terms O(rn, n+1 

r 

L

n–2
2) can be 

disregarded. 
Let us estimate the reflectivity of actual optical 

systems by the example of a typical model system 
containing an objective and an ocular. Considering 
this model system, it is possible to gain an impression 
of features of the reflection observed in many optical 
devices. 

The system consisting of the objective and ocular 
has no less than four reflecting layers. For instance, 
the first two layers are the objective of the achromatic 
doublet type (see Fig. 4), the third layer is the air 
gap, and the fourth one is the ocular. The refractive 
index of the first layer is the mean value of the 
refractive index for crown glasses (1.53), and that of 
the second layer is the mean value for the flint glasses 
(1.67). The fourth layer (ocular) is assumed to be 
crown (1.53). The air media have a unit refractive 
index. As the thicknesses of layers (dn in βn = 
= k0 

nn 

dn 

cosθn), their typical values are taken: 
d5 = 1 cm (crown in the objective), d4 = 2 cm (flint in 
the objective), d3 = 15 cm (the distance between the 
objective and ocular), d2 = 1 cm (crown in the ocular). 
  Take n = 5 in Eq. (9), which corresponds to four 
reflecting layers, five reflecting interfaces, and six 
media. The medium emitting the radiation is air. The 
medium number is 6 (Fig. 6). Applying sequentially 
the recurrence formula (9) and taking into 
consideration that r 

L

0  = r1, 2, we have 

 r 

L

4
 = r5, 6 + r4, 5 

exp[i2β5] + r3, 4 

exp[i2(β4 + β5)] + 

 + r2, 3 

exp[i2(β3 + β4 + β5)] + 

 + r1, 2 

exp[i2(β2 + β3 + β4 + β5)]. (10) 

Thus, the reflection coefficient over the field for 
four reflecting plane layers is expressed as the sum 
(multiplied by oscillating factors) of reflection 

coefficients of five interfaces. Following Eq. (10), the 
reflectance of such four-layer medium R 

L

4  (for any of 
the components: ⊥ or ||) is written as follows: 

 R 

L

4  = R5, 6 + R4, 5 + R3, 4 + R2, 3 + R1, 2 + 2A; (11) 

 A = r5, 6 
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cos(2β5) + r4, 5 

r3, 4 

cos(2β4) + 

 + r3, 4 

r2, 3 

cos(2β3) + r2, 3 

r1, 2 

cos(2β2) + 

 + r5, 6 

r3, 4 

cos[2(β5 + β4)] + r4, 5 

r2, 3 

cos[2(β4 + β3)] + 
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  + r3, 4 

r1, 2 

cos[2(β3 + β2)] + r5, 6 

r2, 3 

cos[2(β5 + β4 + β3)] + 

 + r4, 5 

r1, 2 

cos[2(β4 + β3 + β2)] + 

 + r5, 6 

r1, 2 

cos[2(β5 + β4 + β3 + β2)]. 

Here, we took into account that, in the absence of total 
internal reflection (when the angles θk, k = 1, …, 6, fall 
in the range 0–40°), the reflection coefficients of 
interfaces of nonabsorbing media are real. 

Figures 9 and 10 show the total reflectance of 
the considered model optical system in the near IR 
range, calculated by formula (11). 
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 n4Δd4/λ  
Fig. 9. Reflectance of the model optical system for the 
normal incidence: λ = 1 μm; n6 = n3 = n1 = 1, n5 = n2 = 1.53, 
n4 = 1.67; d2 = d5 = 1 cm, d3 = 15 cm, d4 = 2 cm; Δd4 is 
deviation of the thickness of the fourth layer d4. 
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Fig. 10. Dependence of the model optical system reflectance 

on the incidence angle θ6: λ = 1 μm; n6 = n3 = n1 = 1, 
n5 = n2 = 1.53, n4 = 1.67; d2 = d5 = 1 cm, d3 = 15 cm, 
d4 = 2 cm. 

 

Figure 9 corresponds to variations of the optical 
depth of the medium 4 (flint, Δd4 is the deviation of 
the layer thickness from the initial value) for the 
normal incidence (θk = 0, k = 1, …, 6), and Fig. 10 

corresponds to variations of only input incidence 
angle θ6 (all other angles also change because they 
are related to θ6 by the refraction law). 

It follows from Fig. 9 that at λ/4, 3λ/4, 5λ/4, … 
increments of the flint glass optical depth (n4 

Δd4) the 
reflectance of the entire multilayer system is maximal, 
while at λ/2, 2λ/2, 3λ/2, … increments it is minimal 
(anti-reflectance). This result agrees with the behavior 
of the reflectance of a single layer at variations of its 
optical depth, when the refractive index of the layer 
exceeds the refractive indices of other media (see 
Fig. 7). The dependence of the multilayer optical 
system reflectance on the incidence angle (see Fig. 10) 
is more complex, primarily because of the nonlinear 
variations of βn 

(at increasing θn) in formula (11). 
  As shows from Figs. 9 and 10, the reflection 
coefficient of the multilayer optical system oscillates 
at optical frequencies (the frequencies are high due to 
high wavenumber k0). Therefore, the slow time 

variation of the input incidence angle θ6 (for example, 
at the entire system rotation with some angular 

velocity ω) leads to rapid change of βn in formula (11). 
  Let equation (11) be time-averaged over the time 
interval T. This corresponds, for instance, to averaging 
of the received reflected energy by the photoreceiver. 
If θ6 = ωt, the averaging of the first term in A in 
Eq. (11) at Tωα5 >> 1 gives 

 5 5

5
0

1 2
d cos 2 ( ) cos 2 ,

4

T

t t
T T

π π⎛ ⎞β = α +⎡ ⎤ ⎜ ⎟⎣ ⎦ ωα⎝ ⎠∫  α5 = k0n5d5. 

The analogous result is also obtained after 

averaging other terms in A. At λ = 1 μm, d5 = 1 cm, 
and n5 = 1.53, the inequality Tωα5 >> 1 can be 
rewritten as ω >> 10–5/T. If the eye inertia constant 
T = 1/25 s is taken as the averaging interval, then, 
when observing the reflector by the eye (in the visible 
range immediately and in the IR range – on the 

display), this inequality holds provided the relative 

angular velocity of rotation of the system “eye – 

reflector” ω exceeds a few angular minutes per second. 
In this case, the oscillating terms in formula (11) are 
small, they can be neglected, and A = 0. Then the 
averaged total reflectance <R 

L

4> of the four-layer 
plane system is approximately equal to the summarized 
reflectance of all interfaces: 

 <R 

L

4> = R5, 6 + R4, 5 + R3, 4 + R2, 3 + R1, 2. (12) 

For the considered model system, <R 

L

4> = 19.6% 
(R5, 6 = R2,3 = R1, 2 = 4.39%, R4, 5 = 0.19%, R3, 4 = 6.29%). 
Therefore, at the above rotation velocity ω the eye 
does not resolve variations in the level of the reflected 
energy, and this energy for eye is constant and equal 
to 19.6% of the energy incident upon the multilayer 
system. At a somewhat slower rotation, the eye will 
resolve changes in the reflected energy as a variable 
reflector brightness. In this case, as shows from Fig. 10, 
the reflection coefficient R can reach 70%. 

Obviously, for the system with some arbitrary 
number of layers the formulas are similar to Eqs. (11) 
and (12). Therefore, the averaged reflectance of any 
multilayer system of the plane layers approximately 
is equal to summarized reflectance of all interfaces. 
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  These results correspond to the system of plane 
layers. However, in actual optical systems the layers 
can be considered plane when dealing with sufficiently 
large-size optics with (on the average) large focal 
distances. In most widespread small-size optical 
devices, the curvature radii of surfaces are small, and 
the surfaces themselves have a close-to-spherical shapes. 
  In general, the interface curvature influence is 
quite complicated and this problem can be solved 
applying the corresponding equations describing the 
wave diffraction in the system of enclosed media. 
However, in the case of our interest, when the 

reflectances of interfaces are not large, the accounting 
for the effect of their curvature can be made in a 
standard way, i.e., by the calculations similar to those 
in Refs. 1 and 2. 

Assuming that the wave field, incident on the 
multilayer system, is plane, we can determine the 
field, reflected from a certain chosen interface, and 
the field, having passed through it. The reflected 
field is then considered as the initial one and can be 
recalculated in the opposite direction. It is shown in 
Ref. 1 that if a spherical wave falls on the plane 
interface, the reflection coefficient remains almost the 
same and follows the Fresnel formulas. This means that 
for a small section of the curved surface the reflection 
coefficient remains the same. Locally, it is the same 
as for the plane interface. However, in contrast to 
the plane interface, the reflection coefficient of the 
close-to-spherical surface has the phase factor, which 
accounts for the phase shift due to the surface 

curvature. Thus, if = ( , )x yρ  are the transverse 
coordinates and 0( )u ρ  is the field incident on the 
interface k + 1 → k (wave incidence from the medium 
k + 1 to the medium k), then the field of the wave, 
passed through the interface and reflected from it, is 
represented as  
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 (13) 

Here f = FR, w = r for the reflected wave; f = FT, 
w = 1 + r for the transmitted wave (due to phase 
jump by π upon reflection1; the field coefficients of 
reflection r and transmission t are related by t = 1 + r); 
r = rk, k+1 

is the coefficient of reflection from the plane 
surface; Fk, k+1 is the curvature radius of the surface; 
nk+1 and nk are refractive indices of the media k + 1 
and k. If the interface is the collecting surface 

(convexity is directed toward the surface), then Fk, k+1 
is negative; otherwise, if the surface is dispersing  

(the convexity coincides with the direction of wave 
propagation), it is positive. For the plane wave, 
Fk, k+1 = ∞. When changing the wave propagation 

direction to the opposite one, the collecting surface 
becomes dispersing and the curvature radius changes 
its sign, i.e., Fk, k+1 = –Fk+1, k. The difference nk+1 – nk 
also changes the sign, hence 

+ +
=

T T
, 1 1, .k k k kF F  

It follows from representations (13) that, when 
the plane wave ( 0( )u ρ  = u0 = const) propagates from a 
thinner medium to a denser one (nk+1 < nk), there 
appears focusing for the collecting interface (Fk, k+1 < 0, 

+

T
, 1k kF  > 0) and defocusing for the dispersing interface 

(Fk, k+1 > 0, 
+

T
, 1k kF  < 0). On the contrary, for the 

reflected wave the collecting surface gives defocusing 
(Fk, k+1 < 0, 

+

R
, 1k kF  < 0), and dispersing surface gives 

focusing (Fk, k+1 > 0, 
+

R
, 1k kF  > 0). 

Accounting for formulas (13) in calculation of 
the field, reflected from each interface, shows that the 
Airy formula (10) is valid. For the four-layer medium, 
it can be written in the form 

 r 

L
4  = a5, 6 

r 5, 6 + a4, 5 

r 4, 5 

exp[i2β5] + 

 + a3, 4 

r 3, 4 

exp[i2(β4 

+ β5)] + 

  + a2, 3 

r 2, 3 

exp[ i2 (β3 + β4 + β5)] + 

 + a1, 2 

r 1, 2 

exp[ i2 (β2 + β3 + β4 + β5)]. (14) 

Here, as in Eq. (10), r k, k+1 

is the coefficient of reflection 

from the plane surface; βk = k0 

nk 

dk 

cosθk; ak, k+1 is the 
coefficient accounting for the surface curvature. 

In the general case, the coefficients ak, k+1 depend 
on the thicknesses of the layers and curvature radii of 
the surface, through which the incident wave has 

passed in forward and backward directions (to and 

from the boundary k + 1 → k). In the traditional 
small-size reflecting optics, the layer thicknesses in 
the objectives are much less than the curvature radii 
of their interfaces. This makes it possible to 
considerably simplify the formulas for the coefficients 
ak, k+1. For multilayer system, containing N interfaces, 
after expressing the curvature radii of all interfaces 
through the curvature radius of the input surface  
FN, N+1, we obtain 

 a k, k+1 = 

2
0 , 1

, 1

exp – ,
k k

N N

ik

F

+

+

⎧ ⎫ρ ν⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 1 ≤ k ≤ N, 

 Fk, k+1 = mk, k+1 FN, N+1, mN, N+1 = 1, (15) 

where νk, k+1 are calculated using the recurrent relation 
 

 νk–1, k = νk, k+1 + nk
–1, , 1

1 1
– ,

k k k km m
+

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 νN, N+1 = nN+1, 2 ≤ k ≤ N. (16) 

Moreover, the effective focal distance F 

S
j  of the 

subsystem containing j interfaces (with j counted of 
from the input interface N + 1 → N) also depends on 
νk, k+1: 

 F 

S
j  = FN, N+1 

/[νS, S+1 – nS/mS, S+1], 

 S = N + 1 – j, 1 ≤ j ≤ N. (17) 

The focal distance F 

S
j  is positive (negative) for the 

focusing (defocusing) subsystem. 
Let us estimate νk, k+1 [and, hence, ak, k+1 

in 

Eq. (14)], corresponding to the objective in the 
considered model system. In this case, it is necessary 
to know the curvature radii of interfaces. As is seen 
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from Figs. 4 and 5, the front surface in the objectives 
(input interface N + 1 → N, N = 5, F5, 6) is the collecting 
surface, and the back surface is usually the dispersing 
one. The front layer (numbered N) usually is a 

symmetrical biconvex lens. Therefore, we can consider 
that F4, 5 = –F5, 6 (or equivalently that m4, 5 = –1). 
Then, ν5, 6 = n6 = 1, ν4, 5 = n6 + n5 

(1/m4, 5 – 1) = n6 – 
– 2n5 = –2.06, where we have used particular values of 
refractive indices of the layers, assumed in the model 
system. Since the objective in the system consists of 
two layers (three interfaces), its effective focal distance 
F 

S
3, following Eq. (17) is represented as 

 F 

S
3 = F5, 6 

/B, B = n6 + n5(1/m4, 5 

– 1) + 

 + n4(1/m3, 4 –
 

1/m4, 5) – n3 

/m3, 4. 

With known m4,5 and B, this expression can be used 
for finding m3, 4 (and, hence, the curvature radius of 
the back surface of the objective F3, 4 = m3, 4 

F5, 6). 
Substitution of the obtained expression for m3, 4 into 
definition of ν3, 4 gives 
 

 ν3, 4 = [Bn4 – n3(n6 – 2n5 + n4)]/( n4 – n3). 

The objective is the focusing subsystem, therefore 
F 

S
3  

>
 

0. Consequently, at F5, 6 

< 0 (the collecting input 
surface), B

 

<
 

0. In the widespread optical systems, the 
focal distances of the objectives are usually less than 
the curvature radius of the front surface (F 

S
3  

<
 

|F5, 6 

|, 
|B| ≥ 1) and much less than for the systems with 
ocular (|B| >> 1). The calculation of ν3, 4 (for assumed 
refractive indices) shows that at B = –1, –2, –5, –10 

ν3, 4 

= –1.9, –4.4, –11.9, –24.3, respectively. 
Taking into account the obtained values of ν5, 6, 

ν4, 5, ν3, 4, estimate now relative contribution of each 
term to the reflection coefficient of the four-layer 
medium (14). In the region where the directional 
pattern of the multilayer reflector has been formed 
(at a distance before the inlet pupil of the reflector, 
substantially exceeding both the length of the reflector 
itself and the largest radius from all curvature radii 
in the reflector), we obtain 

 | a4, 5 

/a5, 6 

| = | ν5, 6 

/ν4, 5 

| = 0.48; 

 | a3, 4 

/a5, 6| = |
 

ν5, 6 

/ν3, 4 

| = 0.52–0.04. 

For the reflectance, which is the squared reflection 
coefficient with respect to the field, the contribution 
of the second and third terms in Eq. (14) (due to 
ak, k+1) are 23 and 27–0.16%, respectively, of the 
contribution of the first term. Hence, the main 

contributor to the reflection coefficient of the objective 

is the front interface. In contrast to the system of 
plane layers Eq. (12), this phenomenon is associated 
with the influence of the curvature of interfaces. 
  As the analogous analysis shows, deeper interfaces 

(F2, 3, F1, 2) make still less relative contribution to the 
reflectance. For instance, at B = –2, m2, 3 = –m3, 4 /2, 
m1, 2 = –m2, 3, we have 

 | a2, 3 

/a5, 6 

| 2 =12.7%, | a1, 2 

/a5, 6 

| 2 = 0.7%. 

Moreover, the wave reflected from the deeper 
surfaces is subject to vignetting (cutting the beam part 

by the cylindrical mounting of optics). As a result, 
the reflection coefficient of such surfaces additionally 
decreases. Application of protective blinds to the 
objectives enhances the vignetting of all reflecting 
surfaces. 

Taking into account the main contribution of the 
input surface, we obtain from formulas (14) and (15) 
the approximate expression for the reflection 

coefficient ( )r ρ  of the small-size optics 

 ( )r ρ  = ur

⎧ ⎫ρ ρ⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

2 2

0

2

rr

exp – – ,
22

ik

Fa
 ur = rN, N +1, 

 Fr = FN, N+1 

/2 < 0, (18) 

where ur, Fr, and ar are the reflector parameters, 
namely, the reflection coefficient, focal distance, and 
radius; rN, N+1 and FN, N+1 are the reflection coefficient 
and curvature radius of the input collecting surface. 
The reflection coefficient (18) coincides in the form 

with the typical initial condition for the Gaussian beam. 
  As is seen from Eq. (18), the plane wave incident 
on the small-size optics is reflected in the form of a 
spherical wave, whose source is located at the distance 
|
 

FN, N+1 

|
 

/2 behind the objective front surface. All 
other conditions the same, the cross-sectional area of 
the section, reflecting the radiation, which then 
comes to the photoreceiver, is less for collecting plane 
as compared to the plane one (the equivalent radius 
arp of the plane section, corresponding in energy to 
the reflection from the collecting surface, can be 
determined from the relation k0 

a
2
rp

 = Fr). Therefore, 
the effective reflectance, determining the energy of 
different reflectors, is less for small-size optics than 
for a single plane surface. 

Thus, in the traditional small-size reflecting 
optics with the close-to-spherical interface, the front 
input surface is the main contributor. This surface is 
most often the air–crown interface with a mean 
reflectance of about 4%. The reflectance of high-
quality anti-reflective objectives in the IR range does 
not exceed 4%; therefore the reflection coefficient of 
the widespread optics does not exceed 4% on the 
average. On the whole, the reflection coefficient of 
small-size optical devices is much less than that of 
large-size optics with large focal distances and 

reflectance of 20% and larger (at the observation 
distances less than the focal distance, the large-size 
optics can be considered as a system of plane layers). 
The effective reflectance of small-size optics appears 
to be even less than that of a single plane surface. 
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