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A vector method for analyzing the accuracy of a solution of an inverse, 
problem has been developed. The method proposed provides for the presence of 
a Joint complex of optical data and a priori estimates of a given portion of the 
parameters to be reconstructed. The relations derived are given in terms of the 
optical signal response and signal correlation with the variations in the 
parameters and are analyzed as functions of the quality of a priori estimates 
and limiting values of the factors. 

 
The study of the information content of optical 

characteristics is very significant for solving inverse 
problems of light scattering. Being performed at the 
preliminary stage of model calculations it would contribute 
to an optimal design of optical experiments and provide 
reliability of operational information about the object of 
interest. 

We will proceed from a linear model for the relation 
of sets of measurements of optical characteristics 
σj*(j = 1.2,....,m) and unknown parameters a1(I = 1,2,…,n) 

 

σ* = Ua + Δ0, (1) 
 

where U is the mm×n matrix, and the vectors σ∗ and 
a are defined by the components σj* and a1. We will 
assume also that the errors Δ0 in the actual 
realization of σ are mainly caused by random 
measurement errors, which are normally distributed 
and statistically independent with the covariance 

matrix Ñ2(σ – σ* = Δ0) = Imε
0

2
, where Im is the unit 

m×n matrix. 
The major factors responsible for the efficiency 

of the solution of the inverse problem are included in 
the Fisher matrix 

 

Φ = 
UTU

ε
0

2 . (2) 

 

Its diagonal elements that characterize the average 
sensitivity (or the conditional information content) of 
the vector σ to a1, have been examined elsewhere1-5 

 

Φii = 
||U1||

2

ε
0

2 , (3) 

 

where ||Ui|| is the norm of the ith column vector of 
the matrix U. Note that in Refs. 1 and 2 Φ is 
replaced by the "matrix of informational coverage" 
S = À0ΦÀ0, where A0 is the diagonal matrix of the 
parameters a0 of a model solution, to account for the 
actual contribution of the unknown parameter to σ. 
In estimating the accuracy in Ref. 5 this has been 
achieved by substituting logarithms for a1. 

However, all the salient features of the inverse 
problem solution are, as a matter of fact, in the 
nondiagonal elements of Φ, responsible for the 
correlation between sensitivities (3) for different pairs 
of parameters. In Refs. 1 and 2 this fact has been 
accounted for by considering eigenvectors and 
eigenvalues of the matrix S that implies a search for 
linear combinations of the starting parameters for 
which the vector cr provides an "independent" 
information. Estimates of norms or condition numbers 
of the matrix Φ, that have been reported in Ref. 3, 
make it possible to evaluate correctly the information 
content of the input data of the inverse problem that is 
averaged over the components a1. Finally, in Refs. 6 
and 7 it is the covariance error matrix 
 

 (4) 
 

of the vector of estimates 
 

 (5) 
 

obtained with the use of the least-squares technique 
(m ≥ n), which is to be regarded. In this representation 
the correlation between the sensitivities is ;taken into 
account in error variances in reconstructing the 
parameters. The values of the nondiagonal elements 

Ñ2(Δ~à) are a measure of correspondence of the chosen 
system of parameters a to linear combinations 

 independent of σ. The 
conversion to the latter can be realized by 
orthogonization of columns of the matrix U using, for 
instance, the well–known Gram–Schmidt procedure. 

The relation for the error variance of the 
parameter reconstruction under the assumption that it 
separates the response and correlation factors was 
derived in Ref. 7 

 (6) 
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Here ρ… in terms of the statistical relationship 
theory is the multiple correlation coefficient between 
variations in σj caused by variations in the parameter 
a1 and the remaining n – 1 parameters à1,…, ai-1, 
ai+1,…, and an. Geometrically it is determined solely 
by the angles included between the vectors Ui. For 
instance, for n = 2 ρ12 = cos(U1, U2) and for n = 3 
ρ1,23 is the cosine of the angle of U1 with the plane in 
which the vectors U2 and U3 lie. It It should be 
noted that this kind of representation proves very 
convenient for model computations and makes it 
possible to reveal the reasons for the changes in the 
information content of optical measurements 
depending on one or another set of the parameters to 
be measured and reconstructed. In particular, the 
reduced number of the parameters being 
reconstructed simultaneously results only in the 
diminishment of the term ρ2… in Eq. (6). In the 
investigated method this is realized by diminishing 
the dimensions of the columns of the matrix U. The 
latter remark, in fact, means that the corresponding 
portion of the parameters determined from the data 
independently of σ is known exactly a priori. The 
question of the existence of the a priori estimates is 
quite legitimate, especially due to limited 
potentialities of an optical experiment or the 
development of routine procedures for its processing. 
Unfortunately, these procedures suffer from errors, 
therefore the corresponding analytical tools used for 
the evaluation of the information content are to take 
into account the quality of a priori estimates. The 
present paper is devoted to this question. 

Let us assume that the optical measurements σ* 
are supplemented with an independent concomitant 
information on the q parameters à1, …, ak, which 
belong to a set of all n of the parameters ai, which are 
significant in describing the optical properties of the 
dispersed system (||Ui|| . ||Un+1||). In addition the errors 
in the concomitant measurement are also normally 
distributed and statistically independent with the 

covariance matrix Ñ2 (Δq = Δi=1,…,k) = Iqε
q

2
. Evidently, 

such an information will improve the quality of 
reconstruction of the rth parameter àr that does not 
belong to the collection, of the parameters à1, …, ak. 
This fact is expressed mathematically by means of the 
information transmission in terms of correlations 
described by nondiagonal matrix elements of the second 
moments (4), i.e., in terms of <ΔàrΔ1>,…,<ΔàrΔàk>. For 
this reason to obtain the relations- for such a 
procedure, we make use of the formalism of the 

statistical relationship theory. The error vector Δa
∼
 of 

the estimates will be regarded as the vector of 
randomly correlated quantities with zero expectations. 
Then, for an absolutely exact assignment of the values 

of Δa
∼

1>,…,<Δa
∼

k (i.e., the parameters à1,…, ak) the error 

Δa
∼

r will be described by a certain quantity Δa
∼

r

⊥

|l…k, 

which has conditional probability distribution with  

respect to Δa
∼

l,…,Δa
∼

k. In this case, according to Ref. 8, 

Δa
∼

r

⊥

|l…k will represent Δa
∼

r, minus the linear regression 

Δa
∼

r

′

|l…k = j
ir

i 1,...,k

a

∼

=

β Δ∑ of this quantity over Δa
∼

l,…,Δa
∼

k, 

where βrj
 are partial regression coefficients, i.e., we can 

write 
 

Δa
∼

r = Δa
∼

r

⊥

|l…k + Δa
∼

r

′

|l…k. (7) 
 

In this case Δa
∼

r is governed solely by the optical 

measurement errors Δa
∼

r = Fr Δ0 (F0 is the vector formed 
by the rth row vector of the matrix F = (UTU)–1UT in 
Eq. (5)). The relation (7) only stresses the fact that the 

estimate of Δa
∼

r

⊥

|l…k, which appears in Eq. (13) below, is 

independent of Δa
∼

l,…,Δa
∼

k. Therefore, the expression for 
the estimate of the error in reconstructing the rth 

parameter a
∼

r,l…k with any order accuracy of the 
assigned values à1,...,ak will be similar to Eq. (7), 
where the second term can be regarded as an efficient 
estimate of regression from an independent optical and 
a priori data. On account of the normal distribution of 
probability of the errors in all the measurements and 
the fact that the data sources (Δ0 and Δq) are 
independent, the estimate based on the weighted least–
squares technique will be efficient. We then obtain 
 

 (8) 

 

with the variance 
 

 (9) 
 

where P0 and P1 are statistical weights of the estimates 
 

 (10) 
 

Here Δa
∼

0

′

(r|l…k)
 and Δa

∼
1

′

(r|l…k)
are the estimates of the 

regression error in reconstructing the parameter ar in 
terms of the errors involved in optical and 
concomitant measurements, respectively 
 

 (11) 
 

and 
 

 (12) 
 

and according to Eq. (7), 
 

 (13) 
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For the sake of simplicity the subscripts in parenthesis 
adjacent to Äà will be omitted below. Accounting for 
Eqs. (11)–(13) and the well–known representations of 
the regression coefficients in terms of the minors of the 
covariance matrix of errors in random variables8,9 it can 
be shown that the variances have of the form 
 

 (14) 
 

 (15) 
 

and 
 

 (16) 
 

where 2

ir

,

, ,

l k
C

l k

…,⎛ ⎞
⎜ ⎟

…⎝ ⎠
 is the minor of the matrix Ñ2(Δa

∼
) 

(Eq. (2)), in which, unlike its principle minor 

2
,

, ,

l k
C

l k

…,⎛ ⎞
⎜ ⎟

…⎝ ⎠
 the elements of intersection of the ith 

column of the set I = l,…,k are replaced by the 
elements of intersection of the rth column with the 
rows numbered l,…,k. 

For a subsequent representation of the accuracy 
inherent in the solution of the inverse problem in terms 
of norms and angles included between the vectors Ui, 
we replace the minors of matrix (4) by the minors of 
the matrix Â = UTU in Eqs. (14)–(16). Using the 
well–known relation between the minors of the inverse 
matrix and the initial matrix10 and taking into account 

the symmetry of Â and Ñ2(Δa
∼
) we obtain 

 

 
 

 (17) 
 

 (18) 
 

 (19) 
 

where l′, …, k′ are the numbers of the remaining set of 
n – (q + 1) columns and rows of the matrix Â that 
was not covered by the set with the numbers r, l,...,k. 
The former set represents a portion of the parameters 
a

1
 ′, …, a

k
 ′ for which neither ar nor a priori estimates 

are available. On the basis of the relation 
Âij = ||Ui|| ||Uj|| cos(Ui, Uj) for the elements of the matrix  

Â we will take the norms ||Ui|| out in Eq. (17)–(18) 
and express the remaining angular functions in terms of 
the coefficients, which are similar to those used in the 
statistical relationship theory. We then obtain 
 

 

 (20) 
 

 (21) 

 

and 
 

 (22) 
 

Here 
 

 (23) 

 

and 
 

 (24) 
 

and B
∧
 (……) are the minors of the matrix 

B
∧

 ij = cos(Ui,Uj). Regarding B
∧
 as the matrix of the 

lowest–order correlation coefficients for Ui and Uj 
we can conclude with the use of Eqs. (23) and (24) 
that ρi,l′,…,k′ and ρri,l′,…,k′ are the multiple and partial 

correlation coefficients, respectively. The partial 
correlation coefficient for n = 3 is geometrically 
interpreted as the cosine of the angle included 
between the projections of the vectors Ur and Ui 
onto the plane perpendicular to the Ul′. 

Substituting Eqs. (20)–(22) into Eq. (9) we 
finally obtain 
 

 
 

 (25) 

 

where 
 

 (26) 
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and the use of the quantity 
 

 (27) 

 

is the generalization of the multiple correlation 

coefficient to the case of fixed values of a
l

′
,…, a

k

′
  

(ρ
r
 
2

,l′, …,k′
 = 0) or the partial correlation coefficient 

between the vector Ur and the set of the vectors  
Ul,…,Uk. Relation (25) is drastically simplified for a 
number of the particular cases being of practical 
value. Given accurate data on the parameters 

q

0

0
ε⎛ ⎞

→⎜ ⎟
ε⎝ ⎠

we obtain 

 

 (28) 

 

Conversely, for the lack of the relevant a priori 

information on the parameters q

0

ε⎛ ⎞
→ ∞⎜ ⎟

ε⎝ ⎠
 we shall have 

 

 (29) 

 

In both cases we essentially arrive at Eq. (6) that 
have been obtained earlier, where the limiting 
transition from Eq. (29) to Eq. (28) appears as the 
diminishing of the number of the columns of matrix 
U at the set of vectors Ul,...,Uk, which corresponds 
to accurate data on the parameters a1,…,ak (Ref. 7) 
or to a weak response of optical characteristics to the 
parameters ||Ul||

2,..., ||Uk||
2 → 0 (Eq. (26)). However, 

it is evident from Eqs. (25) and (26) that the 
transition to Eq. (28) will be valid also under the 
conditions 
 

 (30) 

 

 (31) 

 

and 
 

 (32) 

 

The last means that Ur correlates with the remaining 
set of columns of the matrix U just in the same way 
as with the set of the vectors Ul, ,Uk, (Eq. (27)). 
Every of these conditions shuts off a priori 
information channel but makes it possible to reduce 
the maximum variance of an optical estimate 
(Eq. (29)) down to the value given by Eq. (28). Its 
minimum value 
 

 (33) 

 

will be found by supplementing one of the conditions 
(30)–(32) with the condition 
 

 (34) 

 

As R
r

2

,l,…,k,l′,…,k′
 → 1 and the condition (30) or (31) 

is satisfied, we will arrive at formula (28) again. As 
 

 (35) 

 

and 
 

 (36) 

 

a priori information plays a very important role in 
solving the inverse problem 
 

 (37) 

 

For 
2

q

0

ε⎛ ⎞
⎜ ⎟
ε⎝ ⎠

. 1 or ||Ul||
2,..., ||Uk||

2 . 1 the error variance 

in reconstructing the parameter ar is determined 
solely by the accuracy of a priori estimates. 

Let us assume that in solving the inverse 
problem either all the parameters, except that ar, are 
redefined, or the parameter al alone is redefined. This 
is very typical of the situations where comparison is 
made of the a priori information on the particle size 
distribution function with the refractive index of the 
material of the particles. In these cases we obtain 
from Eq. (25) 
 

 (38) 

 

and 
 

 (39) 

 

respectively. 
 

For  we 
derive the relation 
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 (40) 

 

which may be used conveniently in solving the 
simplest and wide–spread problem of determining the 
particle number density ar with the a priori estimates 
of the particle characteristic size al. 

The developed techniques are naturally 
supplemented with an expression which provides for 
the a priori information on the parameter ar as well. 
Regarding the estimates of ar obtained from a priori 
data and from the set σ, al,..., ak as being independent 
and using the weighted least–squares technique, we 
obtain 
 

 (41) 

 

where ε
r

2
 is the variance of the a priori estimate of the 

parameter ar and D2(Δa
∼

r) is given by formula (25). 
Obviously, that for a poor redefinition of the parameter 

ar(ε
r

2
 . D2(Δa

∼
r)), Eq. (41) transforms into Eq. (25), 

and for ε
r

2
 n D2(Δa

∼
r) the quantity D2(Δa

∼
r

*
) = ε

r

2
 is 

determined solely by a priori estimate of the error in 
the parameter àr. 

Finally, it should be noted that, given a priori 
estimates, the procedure of reconstructing the vector 

a
∼
, in contrast to Eq. (5) is possible for m > n – q. It 

can be shown that, in the particular case q = n and  

εr = εq this procedure assumes regularization character 
with a zero–order regulator, where à priori estimates 
appear as "trial solution"11 and the regularization 
parameter is determined from the ratio of the error 
variances of the optical measurement and a priori 
estimates. 
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