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The paper describes the optical remote technique for simultaneous 

measurement of the particles’ size distribution function and mean velocity.  The 

technique is based on the spatial frequency filtration of the particles’ optical image 

in a receiving system.  The temporal correlation function of the frequency-

modulated optical flux received by a photodetector has been constructed based on 

the theory of optical wave propagation through random media.  The particle size 

distribution function is reconstructed by taking the inverse Laplace transform of 

the spatial correlation coefficient of modulated flux fluctuations. In the specific 

case of lognormal distribution the relationships have been obtained for determining 

the distribution parameters. 

 

1. INTRODUCTION 

 

The paper considers the optical remote technique 
for simultaneous measurement of the particles’ size 
distribution function and mean velocity.  It is assumed 
that the particles are suspended in rarefied gaseous (for 
example, in the atmosphere) or liquid flows, and in the 
case of coherent illumination the nonspecular reflection 
of optical waves occurs.  A source of particle 
illumination (coherent or incoherent) is outside the 
particle flow.  The source can be on either sides of the 
flow, realizing the schemes of illumination by reflected 
or transmitted radiation. Self-glowing particles are also 
considered.  The particle size must exceed the 
illumination wavelength (or the maximum wavelength 
of the incoherent source emission spectrum). 

The method is based on spatial filtration of the 
particles’ optical image in a receiving system.1$4 The 
image in a receiver is split into a series of channels.  In 
every channel the phase modulation at different 
frequencies is used.  This is achieved by the application 
of, for example, diffraction gratings with different 
grating periods.3  A single channel also can be used, 
when the radiation passes through one diffraction 
grating with a variable period.  For every grating 
period we measure the temporal correlation function of 
optical flux fluctuations (reflected from particles for 
the scheme with reflection) at a receiving telescope. 

This method can be used for remote diagnostics of 
wind velocity in the atmosphere, for remote 
measurement of the particle size distribution near the 
months of stacks of industrial plants (with subsequent 
analysis of the level of environmental pollution), for 
remote diagnostics of the objects’ dimensions on the 
Earth’s surface (in this case the particle size means the 

transverse size of inhomogeneities on the surface for a 
given illumination wavelength), and so on.  

The applicability limits of the proposed method 
are mainly determined by the ratio of the longitudinal 
size of the observed particle flow Lx (in the observation 
direction) to the optical path length x (the distance 
between the observation plane in the particle flow 
producing a sharp image in a photodetector and by 
photodetector).  The smaller the ratio Lx/x, the more 
precise is the method. The last condition is well 
fulfilled for most of existing schemes of pulsed laser 
sounding of the aerosol atmosphere when the 
longitudinal dimensions of the volume being observed 
are determined by an optical pulse length (or by a 
gating pulse length in the photodetector) and make up 
insignificant part of the entire optical path.5  When the 
above condition is violated, the method will 
overestimate the particle size distribution function 
being reconstructed in the region of small particle size. 

Hereafter we restrict our consideration to the case 
of short atmospheric paths realized, for example, in 
remote ground-based measurement of the particles’ size 
and velocity near the months of stacks of industrial 
plants.  For short paths the disturbing effect of the 
atmospheric turbulence on the light wave propagation 
may be neglected1,2,4 in subsequent calculations. 

 

2. TEMPORAL CORRELATION FUNCTION OF 

FREQUENCY-MODULATED OPTICAL FLUX 

RECEIVED BY A PHOTODETECTOR 
 

Let us assume that the particle flow transverse to 
the observation axis is at a distance x from the input 
aperture of a conventional optical telescope in a 
homogeneous medium.  For the incoherent (thermal) 
source of illumination we consider the arbitrary 
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reflecting characteristics of particles.  In the case of a 
coherent source the particles are considered diffusely 
reflecting (that is typical of the atmospheric aerosol). 

The incoherent radiation wavelength λ 
characterizes the maximum of emission in a certain 
given spectral range Δλ.  A radius of a receiving 
(input) lens of the telescope is designated by at, and 
the focal length - by F.  The input window of a square-
law photodetector (photomultiplier, photodetector, and 
so on) with the radius ap is at the distance F0 from the 
receiving lens plane. A transparency with the intensity 
transmission coefficient 

 

τξ(y) = (1 + cos(ξ y))/2,   ξ[m$1] 
 

is placed directly before the input window of the 
photodetector.  A simple model of the transparency τξ 

is the diffraction grating with the distance between the 
line centers3  d = 2π/ξ (here, d/2 is the linewidth of 
the diffraction grating,  d is its period, and ξ is its 
frequency). 

An electric signal at the photodetector output is 
proportional to the optical flux at its input: 

 

P(t, ξ) = ⌡⌠
 
 d

2
 ρ exp($ρ2/a2

p) I(F0, ρ) τξ(y),  ρ = (x, y),  

(1) 
where t is the observation time, I(F0, ρ) is the 
intensity of incoherent radiation entering the 
photodetector in the plane F0.   

For conventional photodetectors the time of 
response (of signal averaging by the detector) exceeds 
the coherence time of the incoherent source.2  This 
enables one to use the relationships1,2   

 

<U(ρ1) U*(ρ2) U(ρ3) U*(ρ4)> = 

= <U(ρ1) U*(ρ2)> <U(ρ3) U*(ρ4)>, 
 

<U(ρ1) U*(ρ2)> = IA(ρ1) δ(ρ1 $ ρ2), 
 

in calculations of statistical moments of flux (1) for the 
complex amplitude U(ρ) of the incoherent source field 
where IA(ρ1) is the transverse profile of the source 
intensity.  The latter formula describes an averaging of 
the intensity I(F0, ρ) in Eq. (1) over the phase 
fluctuations of complex amplitude of the incoherent 
source.  In this case according to Refs. 1$3 
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Here a0 is the radius of the point-source image in the 
plane F0 of the photodetector.  The value of a0 in the 
sharp image plane, in which 1 $ F0/F + F0/x = 0, is 
minimum, a0 = F0/(kat).  In the subsequent discussion 
we assume that the sharp image plane is the observation 

plane on the object, being coincident with the plane of 
the leading edge of particle flow. 

The intensity IA(ρ′) in Eq. (2) is specified by the 
expression: 
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where ρi = (yi, zi) are the transverse coordinates of the 
ith particle center, ai and ci are the radius in the 
observation plane and the reflection coefficient by 
intensity (for nontransparent particles ci = 1) of the ith 
particle, and N is the particle number density in the 
flow.  For the scheme of particle illumination by 
reflected radiation m1 = 0, m2 = $1.  For their 
illumination by transmitted radiation m1 = m2 = 1.  A 
simple analysis indicates that the radius of particles 
beyond the observation plane is given by the expression 
ai(1 + Lx/x)$1 and for the assumed conditions of 
applicability of the method (Lx/x <   < 1) this radius 
differs little from ai.   

Calculating Eq.(2) and substituting Eq.(2) into 
Eq.(1) we obtain 
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Here aie is the efficient transverse radius of the 
observation zone in the observation plane (the leading 
edge of the particle flow),  L is the transverse radius of 
the observation zone on the observation object cut out 
by a diaphragm of the photodetector receiving window 
(with the radius ap), and  dx is the effective linewidth 
of the diffraction grating in the observation plane. 

In what follows we consider that the observation 
zone radius L in the flow exceeds significantly the 
particle size ai and the point-object image size (in the 
plane of the sharp image) a0x/F, recalculated by the 
rules of geometric optics in the plane of the leading 
edge of particle flow, is much larger than L, that is,  

 

L >   > ai,  L >   > a0x/F . 
These conditions are usually fulfilled in practice, with 
aie = L.  
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It is also assumed that the observation zone is 
inside the particle flow and does not intersect its 
transverse boundaries.  If the transverse flow 
dimensions are denoted by Ly  and Lz, then the latter 
condition is equivalent to the fulfilment of the 
conditions Ly >   > L and Lz >   > L. 

The particle motion in the flow is described by the 
expression: 

 

ρi = ρi(t) = ρi(t0) + v(t $ t0), 
 

where t0 is the starting time, v = (vy, vz) is the mean 
particles’ velocity in the flow (flow velocity), and 
ρi(t0) are the initial transverse coordinates of the ith 
particle center. 

To obtain the statistical moments of the received 
optical flux P we further use the generally accepted 
assumptions, namely: the initial coordinates of 
particles’ centers are considered distributed uniformly 
and the number density of particles N is considered 
distributed by the Poisson law.1,2,4,5 The Poisson 
statistics of the particle number density is well fulfilled 
for the artificial particle flows considered in the paper 
(for example, industrial emissions).  In the real 
atmosphere because of the dynamic turbulence one can 
observe deviations from the above-mentioned 
distribution law.  However, even in this case the 
smaller the transverse dimensions of the observation 
zone (provided by the conditions L <   < Lz, Ly), the 
closer is the statistics of the particle number density to 
the Poisson one. After independent averaging1 for the 
first two statistical moments of the optical flux we find 
the expressions: 
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Here τ = (t2 $ t1) is the time delay between the two 

moments of observation,  v = vy
2 + vz

2,  dx1 = dx(ξ1), 
dx2 = dx(ξ2),  l(ξ) = a0ξ/2,  l1 = l(ξ1), l2 = l(ξ2), <c> 
and <c2> are the first two statistical moments of the 
coefficient of light reflection by particles, <n> is the 
mean value of the random particle number density in 
the flow n = N/(LzLy), 
 

Sk(X) = <a
k

 exp($ a
2
X)> = ⌡⌠

0

∞

 
 dr Pa(r) r

k exp($ Xr
2),   
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and the function Pa(r) is the probability density 
(function) of particle size distribution. 

 
3. MEAN PARTICLES’ VELOCITY IN A FLOW 

 
From Eq. (5), assuming ξ1 = ξ2 = 0 we obtain 
 

bp(τ, 0, 0) = 
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By measuring the correlation coefficient bp(τ, 0, 0) 
of fluctuations of the total light flux (ξ1 = ξ2 = 0) we 
find the mean particles’ velocity in a flow.  Really, if 
we know the value of the time correlation scale τk of 
fluctuations of the total light flux, for which 
bp(τk, 0, 0) = exp($1), we have 

 

v = 2 (L/τk). 
 

4. PARTICLE SIZE DISTRIBUTION FUNCTION 
 

Using the spatial correlation coefficient of light 
flux fluctuations bp(0, ξ, ξ) = Bp(0, ξ, ξ)/Bp(0, 0, 0), 
from Eq. (5) we can obtain the following asymptotic 
expressions: 

 

S4(X)/[S4(0)] = ϕ [(x/F0) 2 X],  X = 2 d$2
x , (7) 

 

ϕ(ξ) = ϕ1(ξ) = 2 [4 bp(0, ξ, ξ) $ 1] exp [2 l
2(ξ)], ξ > 2/ap, 

 

ϕ(ξ) = ϕ2(ξ) = 2 bp(0, ξ, ξ) $ 1, ξ < 2/ap. 
 

The condition ξ > 2/ap (d < πap or dx < L) in 
Eq. (7) corresponds to the use of standard diffraction 
gratings with a sufficiently small period, when more 
than one grating line falls on the input window of the 
photodetector. 

The relationships (7) can be used to reconstruct 
the particle size distribution function Pa(r) from the 
measured values of the correlation coefficient 
bp(0, ξ, ξ).  Really, according to Eq. (6) the quantity 
S4(x) in Eq. (7) is the Laplace transform of the 

function r3/2 Pa( r)/2.  Therefore, by measuring 
bp(0, ξ, ξ) from Eq. (7) we find 

 

Pa(r)/[S4(0)] = 2 r
$3

 G
$1

 {ϕ[(x/F0) 2 y]} (r2), r ≥ 0,  
(8) 
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accurate to within the unknown numerical coefficient 

S
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5. RECONSTRUCTION OF THE PARAMETERS OF 

LOGNORMAL DISTRIBUTION 
 
It is known5 that for aerosols of industrial origin 

the particle size distribution function Pa(r) is well 
described by the lognormal law PLN(r), where 

 

PLN(r) = 1/(r 2 π σln a) × 
 

× exp{$ [ln r $ <ln a>]2/(2 σ2
ln a)},   0 < r < ∞,  (9) 

 

σ2
ln a = ln(1 + ma),   <ln a> = ln [<a>/( 1 + ma)], 

 

ma = σ2
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2> $ <a>2. 

 

If in Eq. (6) we set Pa(r) = PLN(r) and use Eq.(7), 
then the problem of determining the particle size 
distribution function reduces to reconstruction of the 
parameters of the lognormal distribution σa and <a>. 

To determine the basic calculation relations, we 
find an asymptotic expression for S4(X), where 

X = 2dx 
$2, at Pa(r) = PLN(r) in the region of large 

values of the argument X.  Using the Laplace method 
for estimating this integral in Eq.(6), we obtain 
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Here Y
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 = Y
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 (μ) is the asymptote for μ >   > 1 solution 

of the transcendental equation μ2Y
*
2 + lnY

*
 = 0.  The 

value of Y
*
(μ) is positive and decreases with the 

increase of μ.  For μ ≥ 2.5 it is described by the 
expression 
 

Y
*
 = ln1/2[μ/ln1/2 [μ/ln1/2 μ]]/μ 

 

with an accuracy of 10%  or better. 
The parameter μ in Eq. (10) has a meaning of the 

ratio of the lognormal distribution width (being equal 
to 2σa  for μa <   <1 or 2<a> for μa ≥ 1) to the diffraction 
grating linewidth in the observation plane dx.   

By measuring the correlation coefficient bp(0, ξ, ξ) 
with the use of three diffraction gratings with different 
periods d1, d2, and d3, such as d2 = ν2d1 and d3 = ν3d1 
(where ν2 and ν3 are the numerical coefficients, for 
example, from the interval νi ∈ (1/2, 2), νi ≠ 1, i = 2, 
3) in the applicability range of Eq. (10), taking into 
account Eq. (7) with ϕ = ϕ1, we obtain: 
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Therefore, the values of the sought-after parameters σa 
and <a> are readily calculated by Eq. (9) from the 
known values of the parameters σlna and <lna>. 
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