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The algorithms are proposed for determining the integral and local 
reference (calibration) values of the optical characteristics for three models 
using the information contained from the backscattering signals themselves.  
These algorithms do not require more simplifying and modeling assumptions 
about the optical properties of the medium than it is needed for the 
performance of known methods of determining the profiles of the optical 
characteristics along the path under investigation.  It is shown that 
practically all the atmospheric and hydrospheric situations obey the 
applicability criteria of one of these algorithms. 

 
The most complete review of the algorithms for 

backscattering signal processing relative to optical 
parameters may be found in Refs. 1–3.  The 
algorithms are different in the a priori information 
used, the character of the additional experimental 
data, and the sequence of mathematical operations 
accomplished with the signals measured.  
Classification of the known single-lidar algorithms 
from one and the same point of view (revealing 
specific features of the algorithms) and the 
investigations of the condition when they are optimal 
are carried out in Ref. 3. 

It follows from the analysis of the stability of 
different schemes of backscattering signal processing 
to noise interference that the stability of the solution 
is the higher, the more a priori information about the 
medium in the far ends of the sounding path is 
introduced.3  The same ideology follows from Refs. 4 
and 5, that assumes the use of the estimates ε(rk) or 
T(r0, rk) at the far ends of the path under 
investigation (it is possible to obtain them from 
additional independent measurements.  If such 
reference measurements are impossible, the problem 
on calibration at the end point of the path (and at 
the beginning too) is not solved.  Sounding along 
slant and vertical paths corresponds to such a 
situation.  The techniques currently in use for 
estimating the reference (calibration) values, which 
do not require additional independent measurements, 
lead to an ambiguity in the solution (method of 
logarithmic derivative)3 or to a great uncertainity.1,6 

The algorithms for obtaining the reference values 
of both ε(r0) and T(r0, rk) using the information 
contained in the backscattering signals themselves, 
are presented below in the frameworks of the 
assumptions providing the ability of known 
techniques for interpreting the measured signals 
relative to the profiles of optical parameters for all 
possible atmospheric and hydrospheric situations and 
on different parts of the paths, including the far 

ends.  The efficiency is considered of using the 
calibration value estimates obtained by the 
algorithms proposed for different schemes 
(techniques) of signal processing.  The proposed 
theory of determining the reference (calibration) 
values of the optical parameters provides for avoiding 
additional independent measurements. 

Let us take the lidar equation in the single 
scattering approximation as the basis (assuming that 
the portion of absorption in extinction is negligible)6 

 

Ii = 
⌡
⌠

ri

ri+Δr

 

 

P(r)r2 dr = 
AP0
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π
(ri, ri + Δr)
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× T2(0, ri) [1 – exp {–2 ε–i((ri + Δr) – ri)}] . 
 

Let us consider an arbitrary part of a sounding 
path [r1, r4] (Fig. 1a).  Let us write the expressions 
for I1 – I5 corresponding to the parts [r1, r2], [r1, r3], 
[r2, r4], [r3, r4] and [r2, r3] in the form 
 

I1 = B x1 a0 (1 – a1) , 
 

I2 = B x2 a0 (1 – a1a2) , 
 

I3 = B x3 a0 a1 (1 – a2a3) , (2) 
 

I4 = B x4 a0 a1a2 (1 – a3) , 
 

I5 = B x5 a0 a1 (1 – a2) , 
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ε(r) dr  : 

T2(r1, r2) = a1 ,   T
2(r2, r3) = a2 ,   T

2(r3, r4) = a3 , 
T2(0, r1) = a0 ,   0.5 AP0 = B,    
–g

π
(r1, r2) = x1 ,   –gπ

(r1, r3) = x2 , 
–g

π
(r2, r4) = x3 ,   –gπ

(r3, r4) = x4 ,   –gπ
(r2, r3) = x5 . 
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FIG. 1.  The scheme of the sounding path portions 
where backscattering signals are accumulated for 
different models of scattering media used for the 
determination of local and integral reference values 
of the optical parameters. 

 
Then we obtain the solution of system (2) for 

the following models of the medium. 
1. Let us assume that a1 ≈ a3.  Then 
 

I2 = B x2 a0 (1 – a1a2) , 
  (3) 

I3 = B x3 a0 a1 (1 – a2a3) . 
 

The solution to system (3) relative to a1 has the 
form 

 

a1 = I3 x3/I2 x2 . (4) 
 

The assumption a1 ≈ a3 used means the 
approximate equality of the transmission of the 
portions [r1, r2] and [r3, r4] (Fig. 1b).  This condition 
is practically always fulfilled for short portions 
([ri, rj] → 0).  Then, if the portions [r1, r2] and 
[r3, r4] correspond to the width of the backscattering 
signal recording channel (strobe), usually short, the 
value (4) is equal to 

 

T2(r1, r2) = a1 = I3/I2 ,  or  ε–(Δr) = –1/2 ln (I3/I2)   
  (5) 
 

because the ratio x3/x2 ≈ 1, i.e., the mean value of 
the lidar ratio for the long overlapping portions of 
the sounding path [r1, r3] and [r2, r4],  
–g
π
(r1, r3) ≈ 

–g
π
(r2, r4) in the majority of real situations.  

The condition x3/x2 ≈ 1 and especially a1 ≈ a3 is not 
fulfilled only in the case when either [r1, r2] or 
[r3, r4] are at the boundary of different scattering 
media (boundary of the sharp change in composition 
and concentration of the scattering substance). 

The value ε on the part Δr obtained from Eq. (5) 
can be used as reference values (calibration) in the 
techniques for calculating optical parameters which 
need for local reference values (at Δr → 0).  The 
successive displacement of the functionals I2 and I3 
by the value of the spatial resolution can be used for 
obtaining the profiles ε(Δr) on a portion of a 
sounding path. 

When using Eq. (5) for determining the 
transmission a1 of a long portion [r1, r2] (for  
(r2 – r1) → ∞) the assumptions a1 ≈ a3 and x2/x3 ≈ 1 
are more strong (less realistic) than for the case of 
(r2 – r1) → 0.  Obtaining of the algorithms of 
integral calibration (determination of the 
transmission of a long portion of the path) is natural 
when using the assumption on a1 and a3.  Let us 
consider the functionals I1 – I4 

 
a2 = x1x3I2I4/x2x4I1I3 . (6) 
 

The obtained expression (6) is the most fulfilling 
the situation shown in Fig. 1c.  At (r2 – r1) → 0 and 
(r4 – r3) → 0 T(r1, r2) and T(r3, r4) approach to 1 
practically in any atmospheric and hydrospheric 
situations (that means fulfilling the condition 
a1 ≈ a3).  The ratio (x1x3)/(x2x4) is also equal to 1 in 
all events corresponding to the random process with 
uncorrelated values ε and g

π
 along the path.  Really, 

in this case 
 

x1x3 = 
–g

π
(r1, r2) 

–g
π
(r2, r4) = 

= 
–g

π
(r1, r2) 

–g
π
(r2, r3) 

–g
π
(r3, r4) , 

 

x2x4 = 
–g

π
(r1, r3) 

–g
π
(r3, r4) = 

= 
–g

π
(r1, r2) 

–g
π
(r2, r3) –gπ

(r3, r4) . 
 

Thus, if the lidar ratios along a quasistationary 
path under investigation are independent or weakly 
correlated (that corresponds to the majority of 
atmospheric and hydrospheric paths), then 
x1x3/x2x4 ≈ 1.  Taking into account this fact, Eq. (6) 
takes the form 

 
T(r2, r3) = [(I2I4)/(I1I3)]

1/2 . (7) 
 

The transmission values obtained from Eq. (7) 
can be used as reference (calibration) values in the 
known techniques that need for the integral reference 
values of the transmission of a long portion of the 
path (a variant of the solution to the problem of 
integral calibration).  The assumptions used in this 
case are significantly less strict than in the case of 
the local calibration (5), because they do not impose 
any limitation on the behavior of the lidar ratio 
along the path. 
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The variants of solving the calibration problem 
are also possible when using the functionals I1, I4, 
and I5, then at a1 ≈ a3 (Fig. 1d) and the constant 
lidar ratio along the path under investigation 

T(r1, r3) = (I4/I1)
1/2 ,  (8) 

T(r2, r3) = 
(I4 I5/I1 + I4)

I4 + I5
 .  (9) 

It should be emphasized that no other and more 
wide assumptions are needed in this case (in 
comparison with the assumptions, at which known 
techniques for determining the profiles of optical 
parameters) for determining the reference 
(calibration) values. 

2. The aforementioned algorithms for obtaining 
the reference (calibration) signals from the 
backscattering signals themselves, informative 
relative to the profiles of the optical parameters, are 
constructed at the assumption that a1 ≈ a3.  However, 
the solution to the system of equations from the 
functionals Ii is also possible when using the 
assumption7 that a2 ≈ a3.  The arrangement of the 
functionals Ii corresponding to this variant is shown 
in Fig. 1e.  The portions a2 and a3 should be placed 
in this case at the end of a long path and be small, 
i.e., (r2 – r1) → 0, (r4 – r3) → 0.  Taking into 
account the assumption that a2 ≈ a3, the solution to 
the system of equations for the functionals I1, I2, I4, 
and I5 (the assumption used is fulfilled practically 
for all atmospheric and hydrospheric situations, 
except for the case when the portions are at the 
boundary of media) relative to T2(r1, r2) and ε on the 
portion Δrk = [r0, r0 + Δr] can be written as 

 

T2(r1, r2) = ⎣
⎡

⎦
⎤I2 – I1

I2 – I1 I4/I5

1/2

 , (10) 

 

ε(Δrk) = – 
1

2 Δrk
 ln ⎣

⎡
⎦
⎤1 – I(Δrk) 

I5 – I4

I2 I5 – I1 I4
  (11) 

 
and can be used in the techniques of integral and 
local calibration, respectively. 

Use of the algorithm (10) in the case of 
inhomogeneous scattering media (with large variance 
of g

π
(r)) is determined by the presence of portions 

satisfying the condition7 
 
δβ

π
 < exp {2εΔr} – 1   (12) 

 
because of the necessity of obtaining correct results 
(transmission should not be greater than 1 or less 
than 0), where δβ

π
 = Δβ

π
/β

π
 is the degree of the 

medium inhomogeneity. 
If two adjacent parts, [r, r + Δr] and [r + Δr, 

r + 2Δr], for which –ε (r, r + Δr) ≈ –ε (r + Δr, r + 2Δr) 

and –g
π
(r, r + Δr) ≈ –g

π
(r + Δr, r + 2Δr), occur on the 

path under investigation, one can consider the 
functionals I1 and I2 as the terms of infinitely 
decreasing progression with the denominator 

q = I2/I1.  Taking into account that Im(r, ∞) is 
calculated as the sum of the geometric progression we 
have 

 

ε(Δrk) = – 
1

2 Δrk
 ln ⎣

⎡
⎦
⎤1 – 

 I(Δrk) 

I1
  (1 – q)  . (13) 

 
One can use the expression (13) for obtaining 

the reference (calibration) value for any of the 
methods with local calibration.  However, the 
assumption used here requires the presence either of 
quasihomogeneous portions on the path, that is 
possible in a limited number of cases, or 
determination of the functionals I1 and I2 on the long 
portions, what is preferable at sounding of 
background aerosol. 

3. The algorithm (10) considered in section 2 
makes it possible to determine the transmission of the 
long portions in the beginning of sounding paths.  
One can obtain similar results for the transmission of 
the path’s portions situated at the end of the paths 
under investigation, assuming that a1 ≈ a2.  The 
arrangement of functionals shown in Fig. 1,f 
corresponds to this assumption best of all.  The parts 
[r1, r2] and [r2, r3] corresponding to the functionals 
I1 and I5, respectively, should be small ([r1, r2] → 0 
and [r2, r3] → 0).  The system of equations for I1, I3, 
I4, and I5 is solved relative to a1 and a3.  It follows 
from the first and the last equations of the system, 
that 
 
a1 = x1I5/x5I1 . (14) 
 
By substituting a1 into 

 

 I3 

I4
 = 

 x3 

x4
 
1
a1

 
(1 – a1 a3)
(1 – a3)

  

 
we obtain 
 

a3 = T2(r3, r4) = 
(I4 x3 – I3 I5 x4 x1/x5 I1)

(I4 x3 – I3 x4) (x1 I5/x5 I1)
 . (15) 

 
Within the frameworks of the assumption used in 

the known techniques, that g
π
(r) = const or vary 

slowly from point to point, Eq. (15) is transformed to 
 

T(r3, r4) = 
⎩
⎨
⎧

⎭
⎬
⎫

 
(I4 – I3 I5/I1)

(I4 – I3) (I5/I1)
 

1/2

 . (16) 

 
Thus, one can also use Eq. (16) for integral 

calibration in the techniques for reconstructing the 
optical parameters assuming the lidar ratio to be 
constant along the path under study. 

All the aforementioned algorithms (in the 
variants 1–3) both for local and integral calibration 
contain neither instrumentation constants, nor the 
dependence on the sounding pulse energy.  Stability 
of the algorithms to the variation of sounding pulse 
energy from pulse to pulse and the absence of 
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absolute calibration follow from this fact, and 
excludes the errors of determining the 
instrumentation constants.  Moreover, the 
performance ability of the algorithms to obtain the 
reference (calibration) values in the variants 2 and 3 
is provided even in the presence of a sharp change in 
the values of optical parameters at the boundary of a 
media.  Indeed, the mean values 

–g
π
(r0, r) = 

1
N ∑

i=1

N
 
 g

π
(Δri) , 

–g
π
(r0, r + Δr) = 

1
N + 1 ∑

i=1

N+1
 
 g

π
(Δri)  

for long portions including the dividing boundaries, 
differing from each other by only small value of the 
spatial resolution Δr are practically equal at big N 
(N = (r0 – r)/Δr, Δr → 0) and m ≈ 1, that leads to 
the stability of calibration algorithms to the dividing 
boundaries (sharp change of the values of optical 
parameters) of the media. 

At the same time, all the aforementioned 
algorithms of integral calibration by the variants 1–
3, as well as the algorithm of the local calibration by 
Eq. (4) are stable to the presence of the layer with 
sharply varying optical parameters (for example, 
emissions of the stacks of industrial enterprises, at 
sounding of the atmosphere from onboard an aircraft, 
etc.) on the portions of determining the transmission 
(for Eq. (4) at any point of the interval [r1, r4]).  It 
follows from the fact that these layers are 
simultaneously included into the functionals Ii for 
the long portions, different by the value of the 
spatial resolution usually small (Δr → 0), and the 

mean values –g
π
(ri,rj), –gπ

(ri, rj + Δr) of these portions 

are practically equal to each other. 
The measured functionals Ii are used in 

algorithms 1–3 of the integral calibration as a ratio 
of the adjacent readouts, with different Δr value.  
Contributions from the multiple scattering Ci are 
practically the same for the adjacent readouts, taken 
at Δr → 0.  Thus, one can write the algorithms of the 
form (4) and (10) as follows: 

a1 = 
C1

 
I3

C1I2
 ,   a1 = 

mC1I2
 
– C1I1

mC1I2 – nC1C3I1I4/C3I3
 , 

because C3 ≈ C2 for (4) and C1 ≈ C2, C3 ≈ C4 for (10). 
Independence of the calibration algorithms of 

Ci characterizing the contribution of the multiple 
scattering, leads to the insignificant influence of 
the multiple scattering on the results of 
determining the calibration values T and ε.  
Insignificant influence of the multiple scattering 
contribution into the measured signals in the 
algorithms for calculating the optical parameters 
using signals in the form of the relative behavior of 
neighbor readouts differing by Δr was discussed 
earlier in Refs. 1–6. 

The algorithms proposed for determining the 
integral and local calibration values use information 
from the backscattering signals themselves, and there 
is no need (than it is necessary for providing the 
performance ability of known techniques for 
determining the profiles of optical parameters along 
the path) for other simplifying and model ideas about 
the optical properties of media under study.  Indeed, 
the algorithms of the variants 2–3 require the 
smoothness of g

π
(r) and equality of the neighbor 

values of ε(r) on the arbitrary (short or long) 
portions of the medium.  These requirements are less 
strict in comparison with the requirements of 
homogeneity of the medium or constant g

π
 and ε in 

the neighbor layers (then it is necessary to know the 
initial value ε and to have a priori information about 
the behavior of g

π
 between the layers), characteristic 

of the so-called numerical methods of solving the 
optical location equation (by the classification of 
Ref. 6).  The same applies to the techniques of 
analytical solution6 requiring the constant g

π
 value 

along the path or knowledge of the relation between 
g
π
 and ε.  Moreover, the absence of limitations on 

the length of the portion where the functionals I are 
determined in the algorithms proposed increases their 
stability to influence of measurement errors. 

The algorithms for determining the calibration 
values of the optical characteristics in its version 1 
require the use of minimum assumptions, namely, 
the approximate equality of transmissions of two 
short portions (at Δr → 0) of the medium under 
study.  Practically that means the equality of 
transmissions of the portions corresponding to the 
strobe (channel) of the recording instrumentation, 
that is fulfilled even at a significant variance of the 
optical properties (exp{–2εΔr} ≈ 1 at Δr → 0 and 
significant variance of ε).  For example, 
T(Δr) = 0.998 and 0.9998 for Δr = 0.01 km and 
ε = 0.1 and 0.01 km–1, respectively. Though, the 
presence of the medium boundary at [r1, r4] is not 
desirable for these algorithms, because in this case 
the g

π
(r) variations start to affect. As it has been 

analytically shown when describing variant 1, the 
effect of the variance of g

π
(r) caused by natural 

fluctuations, or due to the turbulence, practically 

does not exist: (–g
π
(r1, r2)⋅–g

π
(r2, r4) ≈  

≈ –g
π
(r1, r3)–gπ

(r3, r4) for the same portion [r1, r4]. 

Thus, these assumptions are the weakest from all 
used in the known methods. 

As is seen from the aforementioned, one can 
select the algorithm for determining the reference 
(calibration) value of an optical parameter from the 
measured backscattering signal and to exclude 
undesirable independent supplementary 
measurements of the reference values T and ε for 
any atmospheric or hydrospheric situation.  The 
backscattering signal is used, which is measured for 
determining the optical parameters along the path 
under study. 



64   Atmos. Oceanic Opt.  /January  1997/  Vol. 10,  No. 1 M.M. Kugeiko 
 

 

REFERENCES 

 
1. G.M. Krekov, S.I. Kavkyanov, and M.M. Krekova, 
Interpretation of the Lidar Sounding Signals (Nauka, 
Novosibirsk, 1987), 173 pp. 
2. R.M. Measures, Laser Remote Sensing (John 
Willey and Sons, New York, 1987). 
3. E.D. Hinkly, ed., Laser Monitoring of the 
Atmosphere (Springer Verlag, New York, 1976). 

4. J.D. Klett, Appl. Opt. 20, 211(1981). 
5. J.D. Klett, Appl. Opt. 22, 514 (1983). 
6. V.E. Zuev, G.M. Krekov, and M.M. Krekova, 
in: Remote Sensing of the Atmosphere 
(Novosibirsk, Nauka, 1978), pp. 3–45. 
7. M.M. Kugeiko, I.A. Malevich, and 
S.A. Zenchenko, Izv. Akad. Nauk SSSR, Fiz. 
Atmos. Okeana 26, No. 2, 213–216 (1990). 

 
 


