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We consider in this paper a method for solution of “inverse” problems of atmospheric admixture
dispersal. It is based on solution of the adjoint semispherical equation of turbulent diffusion, as well as
on dual representation of the functional of the admixture concentration. It is shown that this classical
method can be generalized to the class of problems involving calculation of statistical characteristics of
the admixture concentration. As an example, we consider the problem of how a plant with known
pollution emission rate can be placed optimally, i.e., in such a way that the admixture concentration at a
given location does not exceed the preset threshold within the preset probability limits.

The aerosol and gas pollutant transport in the
atmosphere is usually treated in the context of two
classes of problems. In the first, “direct” ones, the
admixture concentration field is determined from known
characteristics of emission sources; while in the second,
“inverse” ones, the source types, coordinates, and
intensity must be determined from known admixture
concentrations at a number of reference points. Within
the Euler approach to turbulent diffusion, one can
efficiently use the semiempirical equation that follows
from the law of mass conservation!:

ot T Tox, @
where C are the instantaneous values of the admixture

concentration; U; are the instantaneous values of the
velocity components of the medium; ¢ is time; x; are the

(0

spatial coordinates, i = 1, 3; and Q is the term
accounting for the pollution sources and sinks. Here,
the subscript indicates summation. In equation (1), we
represent instantaneous values by the sum of ensemble

averages (overbarred) and deviations (primed), C=C + C’

and U; = U;+ U}, and average the result over the
ensemble. The closure of this expression with the use of
gradient hypothesis
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where K;; are the components of the tensor of turbulent
diffusion coefficients.

Let now K;; = 0 for i # j. Generally, equation (2)
must account for the particle sedimentation rate Vi,

0235-6880,/01 /01 69-04 $02.00

and not only U, (i.e., U, — V should be used instead

U,). The “direct” problem will be solved in the
cylindrical domain G, defined by the surface S
consisting of cylinder side ¥, base ¥, (at z=0), and
top Iy (at z = H) faces. To solve the problem, we
complete the equation (2) with the initial and
boundary conditions given by

C(x,y,2,00=0; C=0o0n%,
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where Vg is the parameter of interaction between
particles and boundary %, (V4 20), on which wind
velocity components are all assumed to be zero.

The Marchuk method3 involves construction of an
adjoint problem as formulated by Eq. (2). We multiply

Eq. (2) by some function C. and integrate over entire
solution domain, to finally obtain, with the account of
the condition (3) and nondivergent character of the
medium’s velocity field, that
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with the system of the initial and boundary conditions

Cu(x,y,2,T)=0; C. =0o0n Z, Zp;
oC

- K, d_z* + VgE’* =0 on Z; )

in addition, we obtain the following dual representation
of the functional:

T T
J1=JdtJ136dG= dtJE*GdG. (6)
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Using Eq. (6) and solution of the problem as it is
defined by Egs. (4) and (5), it is possible to solve a
wide range of “inverse” problems of admixture
transport in the atmosphere without multiple solution
of the direct equations (2) and (3).

In the theory of method as introduced in Ref. 3,
the solution C(xy, yy, 21, T) of the “direct” problem
defined by Eq. (2) with Q= Qg d(x —xg) 8(y — yo) *
x &(z — zp) d(t), where zy, vy, zg are the coordinates of
the point instantaneous pollution source and Qy is the
particulate mass released into the atmosphere at the
time ¢ = 0, and the solution E*(xo, Yo, 20, 0) of “inverse”
problem defined by Eq. (4) with P =8&(x — xq) x
x &y —yy) &z —2z) 8t —T) have fundamental
importance. According to Eq. (6), we have in this case

C(xy, y1, 21, T) = Qp Culxy, Yo, 20, 0). @)

The function C. at the point xy,yq, z; at time
t = T quantifies the contribution to the mathematical
expectation of the concentration of an admixture
spreading ~ from the source located at the point
X0, Yo, 20 and activated at ¢ =0. Alternatively, the
Green’s function C.(xg, 7, 29, 0) is customarily called
the sensitivity function.

The applicability of the method is limited by the
fact that relation (6) uses solely average concentration.
Since atmospheric admixture transport is a random
process, this method fails to solve many practically
important problems where distribution laws of
admixture concentration must be known. The present
work generalizes the Marchuk method to the problems
dealing with the calculation of statistical characteristics
of pollutants spreading in the atmosphere.

Let us consider the solution of Eq. (1) in the
domain G, corresponding to — o < x, y, z <+ . Using
the method outlined above and the function C., we
obtain

oC. OUC.
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and, assuming that C and C. vanish at infinity, the
integral identity can be written

T T
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Assuming that Q = O and P = P in it, we obtain
C(xy, y1, 21, T) = Qg Ci(xp, Yo, 29, 0). (10)

Raising both sides of expression (10) to an integer
power m >0 and averaging over an ensemble yields a
set of the initial statistical moments of concentration

@(xuyhth)=Q’6’Cv'f(xo,yo,20,0)- (1)

Now, using standard rules of the probability
theory,4 we can construct the characteristic function of
admixture concentration and, applying Fourier
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transform, determine its  distribution  function

F(C;x,y,z2,0):

F(C; x1,y1, 21, T) = F(Q(Cs; x¢, Yo, 29, 0).  (12)

The relationship (12) is a generalization of the
equation (7) and quantifies the probability with which
the admixture concentration produced by the source of
a known intensity, but unknown coordinates exceeds
some threshold value at a given point.

As an example, we will consider the problem of
placing a plant at a certain point xg, yg, zg, Which is
assumed to emit the mass Qg of material at time ¢ = 0.
We impose the condition that the probability W{ of
finding the admixture at some point xy, 1, 2z at time
t = T with the instantaneous concentration C less than
some (e.g., maximum permissible) threshold C; equals
F(Cy). We assume that the distribution function of the
admixture concentration has the form?

F(C) =1 +% %rf S%B_ erf %% (13)

where erf(...) is the error function; B is the second
parameter of the distribution law, related to the
variance 02 of the concentration by the following
formula:

o _ Ao, 4 @2
=2 = erf(By) % + 2[3% 0 1 +'\/TTBO exp ( Bo),

By =C/B. (14)

The validity of formula (13), expressing the
distribution function, was confirmed experimentally
under conditions of turbulent boundary layer realized in
a wind tunnel; it is an exact analytical solution of
Kolmogorov equation,® while its asymptotic behavior
closely matches that of the classic asymptotes of the
distribution law for the admixture concentration in the
theory of turbulent combustion.?>

Solution of the adjoint problem as it is formulated

by Egs. (4) and (5) yields the field C.(x, y, z, 0). Now
let us determine the variance 02 of the concentration?

og2 0U;02 9 0a> oC oC
-~ = .. = = S —— 2
ot * 6xl~ 6xi Kl] >.X]‘ 2K1] 6xi dx] oo, (15)

02(x,4,2,00)=0; 02=0on23, Ip;
002
— 2V - K, 5+ 2V’ =0on%.  (16)

The adjoint problem, Eqs. (15) and (16), has the form8

do? oU;0% 9 90?2

Tt T ow; o Niow T

—a0?2+R, (A7)

0¥(x,y,2,T)=0; 02=0o0n%, Sy;
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2

J0%
- VSO'E—K22¥+2V80'2=OOD %. (18)

Now, solving Egs. (17) and (18) for

_ dC. dC.
R = 2K, Ox; Ox; (19)

yields the field o%(x,y, 2, 0) =0. From the problem
formulation,

Wy = F(Co; x1, y1, 21, T). (20)

Also, with the account of Eq. (11), we have

Cxy, yy, 21, T) = QoCulxg, Yo, 20, 0);

1
0'2(.?(1, Y1, 21, T) = ngz(xo, Yo, 20, 0)

Now, from the equation (14) we can determine the
second parameter, B, of the distribution law. Thus, W,
is prescribed in the problem formulation, while the
parameters in Eq. (20) are defined as the functions of
coordinates xg, ¥, zg of the pollution source. Thus,
depending on the form of F, the equation (20) defines
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the surface on which the conditions imposed on the
problem are satisfied.

Figure 1 presents the solution of the “inverse”
problem formulated above; the calculations were made
for the case of the spread of nitrogen dioxide over
Novosibirsk from the stationary source with the
intensity equivalent to that of the system of power
plants TES-2 and TES-3 operating in the city. The
river Ob (shown in dark) crosses the city in the south-
north direction. The city is divided by the river into
two halves, and its different parts are shown by
different gray shaded zones (in the center of the
figure). The point where we imposed the condition that
C < Cy with a prescribed probability W was chosen to
lie at the central square of the city on the right-hand
bank of the river at a height of 2 m above the ground
surface. In the figure, the contour lines are horizontal
sections of the surface defined by formula (20) at the
height 50 m above the ground surface. The outermost
contour line corresponds to the condition that
instantaneous nitrogen dioxide concentration is less
than the maximum permissible one with the probability
Wy =10.95, the innermost with the probability

Wy =0.05, and the middle one with the probability
W() =0.5.

System of
TES-2 and TES-3

Fig. 1.

Central square
of Novosibirsk
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The calculations were made for typical,
nearly calm, daylight, summertime meteorological
conditions. These contour lines give approximate
locations of the plants emitting pollutants into the
atmosphere under given meteorological conditions
where they are safe for the center of the city. In
reality, TES—2 and TES-3 are located on the left-hand
bank of the river Ob in the region enclosed by the
contour line with Wy = 0.05.

In the example considered above, unlike Ref. 3,
the criterion of plant placement is based on the
probability that concentration of an admixture is
below some preset threshold. That kind of the
problems cannot be solved by applying only classical
interpretation of Marchuk method. In this regard,
with formulas derived in this paper, the method
introduced in Ref. 3 can be used to solve a wider range
of problems including “inverse” problems of the spread
of atmospheric pollutants with the help of information
on the distribution laws of the admixture
concentration.
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