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We have developed a combined algorithm involving four-step procedure for 
making segmentation of multispectral pictures of clouds and underlying surface 
taken from a satellite. The procedure steps include (1) fragment-by-fragment, 
clusterization of video data into classes; (2) then the closest classes identified are 
united using Bhattacharia spacing; (3) thus formed ensembles of classes are used to 
teach the pattern recognition algorithm used; (4) and finally, this algorithm is 
used to make fragmentation of the entire image. This approach enables one to 
compromise between the necessity of using certain models of the patterns to be 
recognized, for instance, those based on the Johnson approximations we use here, 
and bulky and cumbersome arrays of the initial data. The algorithm performance is 
illustrated by an example of discriminating cloud fields from the patterns recorded 
with an Advanced Very High Resolution Radiometer (AVHRR) onboard NOAA 
satellite. 

 

The major source of operational information for 
solving problems of nature management and climate 
and ecological monitoring are multichannel satellite 
pictures of clouds and underlying surface. Because 
satellite imagery data are typically acquired under 
conditions of broken clouds an additional problem 
arises on distinguishing cloud fields routinely by means 
of algorithms of segmenting the imagery data. The 
problem of cloud field discrimination itself is important 
in cloud water content assessment, microstructure 
sampling, cloud classification, and thunderstorm 
prediction. A specific feature of this class of problems is 
the necessity of handling large-scale fields (for 
instance, a NOAA satellite imagery field consists of 
2048 by 5000 readouts for each of the five AVHRR 
spectral intervals), which makes it difficult to use 
standard approaches. 

Let us now consider a combined algorithm of 
segmenting multichannel satellite images which is based 
upon cluster analysis of local data segments whose 
results are input to pattern recognition techniques. 

The image segmentation is normally understood 
as an automated image splitting into the interpretable 
areas. These areas may be associated with the objects 
to be detected or recognized each with its own 
brightness, geometrical, and texture characteristics. 
As such, the image segmentation is the initial step in 
constructing a formal description of the scene to be 
analyzed. This formal description then is used to 
detect, identify, and recognize objects and 
phenomena. 

The simplest segmentation algorithms are often 
constructed based on the concepts of boundaries and 
constant radiance levels. A detailed review of the 
results from these algorithms can be found elsewhere.1,2 
More elaborate segmentation algorithms use marking of 
the region points based on the homogeneity concept. In 
this case the image segmentation is related to the 
problem on data clustering which is solved by means of 
cluster analysis and techniques of automatic 
classification and taxonometry.3$6,8 

The segmentation algorithms use the classification 
methods in the following way. For each point (pixel) 
of a given image, certain set of characteristics is fixed 
which are called features. In particular, these may be 
digitized values of the recorded brightness fields in all 
spectral intervals. In the space of these features, certain 
groups (clusters) of points are isolated. In the initial 
image, points of each cluster make up connected regions 
separated out by a segmenting algorithm. Performance 
of a segmenting algorithm will depend on the system of 
features formed and on the strategy of selecting closest 
(in some sense) points. 

Two approaches may conventionally be pointed out 
to formation of features. In the first one the features 
characterize some portion of a cloud or surface scene 
viewed by a device and map this data (within the 
sensor resolution) as an element (point, pixel) of the 
image analyzed, so that a set of features is created for 
every image pixel. These may be brightness 
characteristics of the image element from a series of 
spectral intervals or functional transforms of those 
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brightness characteristics. In this way, the 
dimensionality of the feature space is defined by the 
number of sensor spectral channels in use. 

According to the second approach the features are 
defined within a vicinity of the image element. In this 
case one may use statistical properties of the spectral 
brightnesses, brightnesses averaged over an image 
fragment, covariation or texture characteristics of the 
digitized fields. In this case the set of features for the 
pixel analyzed depends on the nearby elements within 
the vicinity chosen. 

When constructing an image segmentation algorithm 
one must (a) form suitable set of features for an 
imagery element, either pixel or a fragment; (b) 
construct a criterion of point clustering in the feature 
space by introducing a proximity measure; and (c) 
outline the strategy of detecting some (desired) number 
of clusters once their number is not prescribed a priori. 

Despite of vast literature on synthesizing 
algorithms for an automated classification (for many 
examples, see Refs. 3$6), this problem is not yet 
properly formalized and the list of algorithms is 
permanently extended with new ones. Classification 
algorithms often use heuristic tricks that allow for a 
variety of problems on the video data analysis. It is 
also worth noting that the analyzed satellite pictures of 
the earth's surface are generally over 1024×1024 
readouts size being set by the series of spectral intervals 
in use. There number constantly grows, so that 
hyperspectral imagery data including hundreds spectral 
intervals have recently emerged, making cluster 
analysis techniques computationally expensive as well. 

The Isodata-Iterative Self-Organizing Data 
Analysis Techniques (IZODATA) are used, in simple 
cases, as part of the ERDAS and ENVI software 
packages.  It is based on formalizing empirical 
experience where the image points are grouped into a 
number of clusters, by minimizing the sum of rms 
deviations of points from the cluster centers and 
maximizing the dispersal of centers themselves.4,5 
Large-format images are clustered block-by-block, and 
the local clustering results are then matched together. 

However, among the approaches to constructing 
the clustering algorithms there is one theoretically 
most well grounded that is based on describing 
classes in the feature space using combinations of the 
probability distributions. In this case, extraction of 
individual clusters is connected with solution of the 
problem of splitting joint distribution into elemental 
conditional unimodal probability functions that, in 
fact, are the models of the classes sought. 
Unfortunately, one needs for identifying poorly 
pronounced local extrema of a function in order to 
solve this problem and this is a computationally too a 
cumbersome task even for a small bulks of data.3$5 

Below we present an algorithm of automatic 
classification which preserves good local properties 
and, yet, is capable of working with large video data 
arrays. It is a four-stage procedure. First, small 
fragments of multispectral imagery data are 
clusterized using a threshold decision making rule 

applied to all variants possible. The second step is to 
normalize the data and unite local classes of all 
fragments into larger blocks with the help of 
intergroup proximity measure. Third, the pattern 
recognition algorithm is taught to distinguish 
between classes produced at the data aggregation 
stage. The final stage is to recognize the image as a 
whole by using the decision making rule chosen. 
Considering that material chosen as teaching can be 
few fragments which are statistically equivalent to 
the entire image, this approach offers considerable 
reduction of computer time yet preserving the 
accuracy of the decision making rule. 

It is specific feature of the algorithm proposed that 
the proximity or distinguishability of the classes is 
quantified in terms of a risk functional or the upper or 
lower boundaries of the class, while the probabilistic 
models of classes are retrieved using Johnson 
approximation. 

Let us now assume that a small image fragment 
locally is clustered using an available technique which 
is chosen to be computationally cheap yet rigorously 
founded, and concentrate on the second and third 
phases of the algorithm construction. 

First, consider in a more detail construction of 
the classification algorithm, followed by pattern 
recognition. Let a set of the digitized video data 
fields be available from observations at several 
spectral intervals, so that each pixel of the surface 
and cloud image, as viewed by an imager, is 
characterized by the random vector 

X = (X1, ..., Xn)T, where T stands for transposing, 

X ∈ Rn, while Rn is the n-dimensional space of 

observations. The components Xi, i = 1, ..., n of the 
observation vector X characterize reflective 
(radiobrightness) properties of land areas and clouds 
at each spectral interval, respectively. We assume 
that the joint distribution of the components of X 
vector in the observation space can be expressed by 
the probability density function as 

 

f(x) = ∑
j=1

Q

 Pj f(x; θj), (1) 

 

where Q is the number of classes, f(x; θj) is the 
conditional unimodal parameterical (with the parameter 

vector θj ∈ Rm and m being the dimensionality of the 
parameter space) probability density function for the 
class j; Pj is the weight of the probability density 
function f(x; θj) in a mixture that has the meaning of a 

priori probability that the class j occurs; ∑
j=1

Q

 Pj = 1; and 

θj are the parameters of the probability density 
function. All parameters defined above are unknown. 
The task is to retrieve, from the available non-classified 
sample X1, ..., XN of N observations, all the 
components {Q, Pj fj(x; θj), j = 1, ..., Q} of the 
mixture (1). 
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It should be noted that the problem of 
reconstructing components of the mixture (1) is only 
solvable if the mixture is identifiable.3,6 This condition 
can hardly be checked in practice and, geometrically, 
that means that f(x) must have well pronounced local 
modes produced by cluster-generating subsamples of a 
mixed sample. Moreover, the behavior of f(x) in the 
vicinity of a mode must enable the reconstruction of the 
parametric functions fj(x; θj) sufficiently accurate. The 
latter functions are the models of the classes sought. 

Now, let us consider the task of choosing 
approximating distributions f(x; θj) for unknown 
cluster models once a data sample X1, ..., XN of this 
class with the volume N is available. Here we consider 
the reconstruction of parametric distributions using 
Johnson approximations.7,10  In so doing, we will allow 
for the consistency of individual feature distributions 
with the true, one-dimensional distributions, and 
describe, to a certain degree of correctness, statistical 
correlations between the vector components being 
observed. The reconstruction of parametric probability 
density functions can be represented as a two-step 
procedure. First, an appropriate Johnson transformation 
is selected for each feature to sufficiently closely match 
the unknown true distribution. At the second stage 
interfeature correlation coefficients are evaluated to 
describe correlation between the transformed 
components of the observed vector. Then, joint 
distribution of the components of the observed vector is 
written as (with class index not shown) 

 

f(x; θj) = 

Π
i=1

n

 
δi τ ′x (x

i; εi, λi)

(2π)n/2 ⏐R⏐n/2
 exp {$ 

1
2
 (γ + 

 

+ δτ(x; ε, λ))T R$1 (γ + δτ(x; ε, λ))}, (2) 
 

where vector γ + δτ(x; ε, λ) = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤γ1 + δ1τ(x1; ε1, λ1)

.

.

.

γn + δnτ(xn; εn, λn)

 ; 

R = (τij); τij = 
1
N

 ∑
k=1

N

 [γ 

i + δiτ(x i
k; ε

i, λi)] × 

 

× [γ 

j + δ 

jτ(x 

j
k; ε 

j, λj)]; 

 

τ(x; ε, λ) is one of the normalizing Johnson 

transformations; θ = (γ 

1, ..., γ 

n; δ1, ..., δn; ε1, ..., εn; 
λ1, ..., λn; (τij)n×n)

T, and  
 

τ ′x(x; ε, λ) = 
dτ(x; ε, λ)

dx
 . 

 

The parameters ε and λ are the lower boundary 
and the span of a sample of each component of the 

observation vector.  These parameters can be evaluated 
either from physical considerations or directly from a 
sample. When ε and λ are known, both γ and δ are 
readily determined by the maximum likelihood 
method.7,10 

After the probabilistic models of classes are 
reconstructed, Bayes decision making rule refers the 
newly observed vector x to one of the classes available4$

6 
 

u = arg max
i=1,...,Q

 Pi fi(x; θ̂i), (3) 

 

where Pi, i = 1, ..., Q are a priori probabilities of 
occurrence of the classes or their estimates, and u is the 
decision made (the number of the class recognized). 
This decision making rule minimizes the probability of 
wrong decisions (averaged recognition error). The 
criterion of a minimal classification error is a particular 
case of the criterion of the type of risk. These criteria 
are the only ones that are adequate to hypothesis 
recognition and testing. 

Since the probability of classification error is 
difficult to estimate4 since the integration of the 
weighted probability density functions is required over 
multidimensional feature spaces, it is worth using the 
boundaries of the error probability. Really, given two 
classes (Q = 2), the average probability of wrong 
decisions ε is expressed through the Kolmogorov 
variational distance as4 

 

ε = 
1
2
 

⎣
⎢
⎡

⎦
⎥
⎤1 $ ⌡⌠

X

 
 ⏐P1 f(x/1) $ P2 f(x/2)⏐dx  ,  

0 ≤ ε ≤ 1/2, (4) 
 

where P1 f(x/1) and P1 f(x/2) are the class 1 and 
class 2 conditional probability density functions, 
respectively, and X is the integration domain. It 
appears that 

 

(1/2) $ (1/2) (1 $ 4ε2
n)

1/2 ≤ ε ≤ εn, 
 

where εn = [P1 P2]
1/2 exp {$ μ (1/2)}, so that the 

quantity μ (1/2) = $ ln ⌡⌠
X

 [f(x/1) × f(x/2)]1/2 dx, 

which is called the Bhattacharia distance, can be used 
as a simplified criterion of the class separability. 

Consider now a simple variant of the pattern 
recognition or automatic classification with the 
Gaussian models of the class description. For Gaussian 
model, the Bhattacharia distance is4 

 

μN ⎝
⎛
⎠
⎞1

2
 = 

1
8
 (m1 $ m2)

T ⎝
⎛

⎠
⎞

 
Σ1 + Σ2

2

$1

(m1 $ m2) + 

+ 
1
2
 ln 

1
2
 (Σ1 + Σ2)

⏐Σ1⏐1/2 ⏐Σ2⏐1/2 , (5) 
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where mi and Σi are the mathematical expectation and 
correlation matrix for the ith class, i = 1, 2. If Σ1 ≅ Σ2, 
which is true for close classes, then 

 

μN ⎝
⎛
⎠
⎞1

2
 = 

1
8
 (m1 $ m2)

T Σ$1 (m1 $ m2) + 

 

+ 
1
2
 ln 

⏐
 

Σ
 

⏐
 ⏐

 

Σ ⏐
  ≅ 0, (6) 

 

and the Bhattacharia distance can serve as a criterion 
for making concatenation of two distributions or, more 
exactly, two sampled ensembles of observations (for 
which μN is small) into a single group thus making up 
a homogeneous class. 

The class separability criterion (5) can also be 
used for distributions constructed with the help of 
Johnson normalizing transformations as follows. First, 
note that Chernov boundary and Bhattacharia distance4 
are invariant relative to one$to$one transformations. It 
is readily shown that, for multidimensional Johnson 
distributions, it is possible to construct a one$to$one 
transformation that converts distributions (2) to the 
normal probability density functions, for which 
distributions, the Bhattacharia distance is calculated 
and has the form of Eq. (5). Actually, for normalizing 
transformation of SL family with the interface ε and 
common parameter λ, we obtain the following 
normalizing nondegenerate transformation (written for 
one component of the vector, for brevity): 

 

ξ = γ + δ ln (x $ ε)/λ (7) 
 

and the transformation inverse to it 
 

x = ε + λ exp {(ξ $ γ)/δ}. (8) 
 

By, substituting ξ into the probability density 
function (2) we obtain, in the new space, that 

 

fj(ξ) = 
1

( 2π)n ⏐Gj⏐
1/2 × 

 

× exp 

⎩
⎨
⎧

⎭
⎬
⎫

$ 

1
2

 

⎝
⎛

⎠
⎞ξ $ ⎝

⎛
⎠
⎞γ $ 

δ
δj

 γ 

j
T

G$1
j  

⎝
⎛

⎠
⎞ξ $ ⎝

⎛
⎠
⎞γ $ 

δ
δj

 γ 

j
 , (9) 

 

where Gj = M 

⎝
⎛

⎠
⎞ξ $ ⎝

⎛
⎠
⎞γ $ 

δ
δj

 γ 

j
 

⎝
⎛

⎠
⎞ξ $ ⎝

⎛
⎠
⎞γ $ 

δ
δj

 γ 

j
T

, j = 0,..., Q; 

M is the operator of mathematical expectation; γ and δ 
are the parameters of the transformation function, and ε 
and λ are the same quantities as in Eq. (2). Similar 
expressions may be obtained for the other Johnson 
distributions. 

The program for implementing this algorithm 
begins with choosing fragments from the image 
analyzed that are to be used as teaching material. 

These fragments can be selected manually by an 
operator instructed to follow fragmentation objectives; 
namely, by increasing representativeness of some class 
or another. It is possible, following this way, to 
increase the accuracy of its description and selection. If 
necessary, the arrangement of fragments within the 
image analyzed can be made using some random 
mechanism, for instance, it may be set uniform. 

The idea of a strategy of fragment selection should 
naturally give teaching material based on the properties 
of statistical homogeneity and representativeness 
characteristic of the entire ensemble of the video data 
on the field to be analyzed. 

As the teaching fragment sampling is formed next 
step is to extract local clusters within each fragment. 
Since the clusters are small, any cluster analysis 
procedure can be used to isolate clusters, including the 
procedures of running over all interpoint distances 
capable of identifying point clusters by the nearest-
neighbor technique. 

In the case, being considered here we used the 
method of extracting left mode in the interpoint 
distance histogram,9 which provides for obtaining the 
statistically mean measure of the point clusterization. 
The main idea of this method is as follows. For each 
vector with the components being the spectral 
brightness values, one calculates distances, in the 
Euclidean metrics, to all other vectors of the fragment 
analyzed and constructs histograms of these distances.  

Then, from all the histograms formed, one selects 
the histogram that has the mode positioned to the left 
of modes of other histograms. The adaptive threshold 
cuts off the group of points making up this histogram. 
Then these points form a cluster and are excluded from 
the subsequent consideration. The process is repeated 
many times until only few vectors remain that do not 
belong to any class established. These are anomalous 
vectors useless for teaching, and their classification is 
performed at the stage of recognition. 

At the second step, results of local clusterizations 
are aggregated by using Bhattacharia distance (6) as a 
measure of class closeness in the space previously 
normalized with the transformation (8). All possible 
pairs of classes of all fragments are checked for 
closeness, in the sense of the minimum of this distance, 
and the closest ones are concatenated. As a result, we 
obtain a few number of classes preset by the operator. 

At the third stage, the classes, thus obtained, serve 
as teaching samples for a pattern recognition algorithm. 
In so doing, parameters of the decision making rule (3) 
are estimated using Eq. (2). At the fourth stage, the 
decision making rule obtained is used to classify the 
entire image by a standard technique. 
To illustrate the algorithm performance, 3 images were 
taken with the size 1024×1024 readouts, acquired with 
the AVHRR from a NOAA satellite in 5 spectral 
intervals (channels), 0.58$0.68 μm, 0.725$1.1 μm, 
3.55$3.93 μm, 10.3$11.3 μm, and 11.5$12.5 μm, with 
the spatial (footprint) resolution of 1×1 km2 per pixel. 
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FIG. 1. (a) Image acquired with the channel No. 1 of NOAA-12 AVHRR; (b) cloud fields identified and (c)  
snow-cover in mountains. 
 
 
 

 
 = b c 
 
FIG. 2. (a) Image acquired with the channel No. 1 of NOAA-14 AVHRR; (b) cloud fields identified and (c) 
snow-cover on an elevated plateau. 
 

 
 = b c 
FIG. 3. (a) Image acquired with the channel No. 1 of NOAA-12 AVHRR; (b) cloud fields identified and (c) 
thunderstorm clouds. 
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The first one was taken over West Siberia and 
Altai from NOAA-12 satellite, from the orbit with 
apogee at 81°83′, at 09:34 LT on May 14, 1997, and 
shows the presence of clouds and snow cover over Altai 
mountains. Eighteen fragments of 64 by 64 readouts 
were chosen to teach the segmenting algorithm. These 
fragments were uniformly spaced within the field of the 
initial, 1024 by 1024 readouts image. The results of 
processing were 233 classes, finally aggregated to give 
50 classes. Then the pattern recognition algorithm was 
used to analyze the entire image. Some results obtained 
using this algorithm are shown in Fig. 1. Figure 1a 
presents the initial image in the radiometer channel 
number one. The result of extracting the class "cloud" 
is presented in Fig 1b and that of the class "snow" in 
Fig. 1c. Based on the data presented in the figures we 
conclude that the classes are resolved pretty well in a 
five-dimensional feature space, while being 
indistinguishable in individual spectral channels. 

The second image was recorded over Putoran 
plateau (medium-mountain elevation of the Central 
Siberian plateau with the height marks of 900 to 
1701 m) by NOAA-14 satellite, orbiting with the 
apogee of 28°00′, on May 29, 1997, at 14:30 LT), and 
shows the presence of clouds and snow cover. The 
fragments of 64×64 pixel size uniformly spaced over the 
entire image were isolated to teach the algorithm. A 
total of 223 classes were identified that finally were 
grouped to give 50 classes. Then the pattern recognition 
algorithm was applied to analysis of the entire image. 
Some results thus obtained are depicted in Fig. 2. 
Figure 2a shows the initial image from the radiometer 
channel number one. The result of extracting the class 
"cloud" is presented in Fig 2b, and the class "snow" 
(snow-covered flat tops of ridges) in Fig. 2c. Such a 
clear separation between the classes could hardly be 
feasible if only single channel data were used. 

The third image was recorded over West Siberia 
and Altai Mountains by NOAA$12 satellite, orbiting 
with the apogee of 76°00′, on August 8, 1997, at 19:37  

LT, and shows the presence of clouds including 
thunderstorm ones. Twenty five fragments of 64 by 64 
pixel size were chosen to teach the segmenting 
algorithm. These fragments were spaced uniformly over 
the entire image of 1024 by 1024 readouts. As a result 
221 classes were identified that finally were combined 
into 50 classes. Then the entire image was analyzed 
using the pattern recognition algorithm. Some results of 
the analysis are shown in Fig. 3. Figure 3a shows the 
initial image from the radiometer channel number one. 
The result of extracting the class "cloud" is presented in 
Fig 3b, and the class "thunderstorm clouds" in Fig. 3c. 
From the figures it follows that the classes are again 
well resolved in the five-dimensional feature space.  
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