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The principles of the theory of linked ordering schemes of rotational-vibrational interactions have
been developed for quasi-rigid molecules. Within the confines of the developed theory, the problem of
indeterminacy of effective Hamiltonians is formulated and solved for the first time. The dependence of
reduction contact transformation generators on ordering schemes in the problem of accidental resonance
interactions has been proved. Physical interpretation is given to limiting ordering schemes of rotational-
vibrational interactions. The “unravel technique” of exponential operators is applied to evaluation of the
relationships between vibrational contact transformation generators in the Watson—Mikhailov limiting
ordering schemes and in the Amat—Nielsen scheme with an integer A-order. For dipole moments of
rotational transitions in the ground and excited vibrational states, nonpolinomial models in the Pade
form have been developed for the first time within the framework of the theory of linked rotational-

vibrational interactions.

Introduction

Intense recent studies of molecular spectra in
many spectroscopic centers all over the world have
made much progress in understanding of the structure
of molecules and radicals, in general, and physical and
chemical processes proceeding in the Earth’s
atmosphere, in particular. Physical and chemical
molecular processes under actual atmospheric conditions
proceed, as a rule, through highly excited rovibronic
states of molecules and radicals that form one of the
principal atmospheric components. The study of these
processes by theoretical and experimental spectroscopic
methods is an urgent problem of atmospheric physics
and optics.

This paper is devoted to the development of
principal aspects of the theory of linked schemes of
ordering  (grouping)  rotational-vibrational — (RV)
interactions in quasi-rigid molecules. The urgency of
this problem is caused, first of all, by the need in
global description of molecular spectra formed by
transitions to and from high-excited, quasi-degenerate
RV states or, in other words, vibrational or rotational-
vibrational polyads.

From the viewpoint of the inverse spectroscopic
problem, strong accidental resonances are one of the
most problematic points in description of molecular
spectra, rotational-vibrational analysis of energy
regions in which gives the worst statistical results as
compared to regions with weak resonances or those free
of resonances. Another important problem in the
analysis of the energy spectrum of molecules is a
prediction of the behavior of RV energy levels at high
rotational energies. From the viewpoint of the direct
spectroscopic  problem, theoretical study of the
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rotational dependence of anharmonic vibrational and
rotational-vibrational resonances is of considerable
interest in analysis of the dynamics of molecular
vibration and rotation. This is due to the necessity to
derive equations for effective parameters in the model
Hamiltonian with molecular constants and to propose
new spectroscopic models for resonance energy regions.

The operators, such as g2J™, g3Jm, g4J™, etc., of
vibrational ¢ and rotational J variables in the effective
rotational Hamiltonian (ERH) have been studied more
or less thoroughly for various molecular systems.
However, they have not been discussed in the literature
from some general viewpoint of ordering intramolecular
perturbations for quasi-degenerate vibrational states.
Coriolis, Fermi, and Darling—Dennison resonance
parameters obtained by different authors for different
groups of RV interactions differ. As was found in this
paper, these differences are consequences of the
fundamental problem of indeterminacy of the effective
Hamiltonian (EH) due to difference in a choice of the
initial molecular Hamiltonian. In this paper, we prove
the statement that there exists an infinite, but
countable set of different schemes of ordering
rotational-vibrational  interactions in  quasi-rigid
molecules.

Many other problems formulated in molecular
spectroscopy, such as rotational-vibrational dependence
of the energy of quadrupole bond, Stark shift, spectral
line halfwidths and shifts, etc. have not been
systematically studied from the viewpoint of the theory
of ordering rotational-vibrational interactions in
molecules. Individual attempts look rather as trials to
study the relation between spectroscopic and molecular
parameters depending on the ordering of noncommuting
operators of intramolecular interactions.
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It is important to note that the physical literature,
especially, on quantum electrodynamics, for a long time
uses the language of T-products, i.e., functions of
ordered operators. Thus, Feynman in Ref. 1 noted that
if the criterion of action is introduced for

1 2 2,1
noncommuting operators, then (A + B) = 2,CkB* An-k,
where A and B are self-conjugate operators in the
Gilbert space, and, as a consequence,
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Feynman believed that once the designations
determining, which of operators acts the first, which
one acts the second, etc., are introduced, they can be
treated as the commuting operators. Maslov in the
Preface of Ref. 2 supposed that such an approach and
its results are connected with the spectral resolution of
functions of ordered operators. The corresponding
theory3 allows overcoming some difficulties of the
method of perturbation theory and formulating
identities not so obvious as the above one.

The approach presented in this paper is based on
the concept of ordering rotational-vibrational
interactions in a quasi-rigid molecule depending on the
order of magnitude of matrix elements of vibrational
and rotational operators. In the operator formulation,
exact analytical equations can be found for operator
terms in the EH and the effective operator of
observation (these operators are constructed in different
ordering (grouping) schemes).

According to the basic ideas of the theory of RV
interactions, there exists a possibility to separate
vibrational and rotational variables in the molecular
Hamiltonian in the ground and nondegenerate
electronic states of semi-rigid molecules,4 at which both
the initial Hamiltonian and the EH are infinite sums of
the series in rotational variables for each elementary
vibrational excitation (exciton) or vibrational variables
for each elementary rotational excitation (exciton). As
it will be shown in this paper, this approach can be
extended to the effective moments of transitions,
including electric and magnetic dipole moments,
quadrupole moment, and moments of higher orders, as
well as the polarizability tensor in the Plachek theory.
The main condition of applicability of the developed
approach is based on the generally known ideas, earlier
applied® to solution of problems of rotational-
vibrational spectroscopy. It consists in the possibility to
expand the operator of observation into a series in
terms of small displacements of nuclei with respect to
the reference (equilibrium) configuration.

Mathematical models of expansion of the EH (or
the effective operator of observation) in terms of
rotational or vibrational “solitons” have the following
physical interpretations: (i) ultrafast rotator: rotational
energy of a molecule reaches (approaches) a value
comparable with the electronic energy (for rotation in
the ground vibronic state this value is about the energy

V.M. Mikhailov

of the first excited electronic term); (ii) overexcited
vibrator: vibrational excitation of a molecule (on
average) approaches the electronic energy.

These models were proposed in 1985 by Watson®
and Mikhailov.” They form the basis for construction of
the EH and the effective dipole moment (EDM) in
nonpolinomial forms. In this paper, the definition of
observation as a theoretical uncertainty of ordering
(grouping) for a parameter will be substantiated. Based
on this definition, accidental resonances will be
classified as strong, medium, and weak, and the
algorithm for construction of the EDM will be
proposed based on the inverse sequence of unitary
transformations. This result seems important when
calculating moments of transitions in high-order
approximation, because it allows the direct use of the
available spectroscopic information on the moments of
transitions in lower orders. For dipole moments of
rotational transitions in the ground and excited
vibrational states, nonpolynomial models in the form of
Pade approximant are developed for the first time
within the framework of the theory of bound RV
interactions.

The initial point of application of a quasi-rigid
molecule to consideration of problems of rotational-
vibrational spectroscopy is an expansion of the initial
molecular Hamiltonian, which is considered in this
paper from the new viewpoint of ordering RV
interactions along with related problems.

1. Expansion of the rotational-
vibrational Hamiltonian
of a quasi-rigid molecule

Rotational-vibrational dependences of energy
levels of isolated states, natural and accidental
resonance interactions, electric dipole moments of states
and transitions, spectral line broadening parameters,
etc. are among the main areas of molecular
spectroscopy. Solution of such problems is closely
connected with the problem of eigenvalues and
eigenfunctions of the complete rotational-vibrational
Hamiltonian of a quasi-rigid multiatomic molecule. The
simplest form of the molecular Hamiltonian, in c¢cm™!,
has been proposed by Watson4:

1
Hyg =53 o, pp+ V(g) +
I 112
* 2hc % IJ“B(‘IO‘ B TB)(JB - T[B) " 8 he % Hag, (1)

where w, are vibrational frequencies, p, are
dimensionless momenta, p,=—1i0,/0dq,, V(q) is the
potential energy, Hgg is the effective inverse inertia
tensor, Jy are components of the total angular
momentum (dimensionless), Ty are components of the
vibrational — angular ~ momentum  (dimensionless),
i=h /2mis the Planck’s constant, and ¢ is the speed
of light.
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Once the matrix I, of the equilibrium inertia
tensor with the elements I4gdug and the matrix a, with

the elements aff = (0Iqp,/00,),, being derivatives of
the inertia tensor I over normal coordinates, have been

72 /2
introduced as well as the matrix ¢ = ) ,, a, 5C%H n;

the tensor W can be expressed in a simple form4

_ 1 -
w=1(E+5al.)7, 2)

where E is a unit matrix. Expansion of (E+%alg1)_2
can be easily performed, because the matrices E and
(al,)"' commute, and the ordinary binomial expansion
can be used:

H= 1;1%5 + Y +1) EL %g(alf)‘g% 3)
g g

5=0

The potential energy V(g) can be presented as the
well-known Taylor expansion in terms of normal
coordinates4:.8.9

1 2 1
V(q) ) z W, g, + 6 z D1 Gmln + --- - (4)
n

Imn

The Schrédinger equation with the rotational-
vibrational Hamiltonian Hyg of a molecule cannot be
solved exactly,4> and the perturbation theory is used to
find eigenvalues and eigenfunctions.®8 In this
connection, IR and MW spectra are analyzed not
directly through the force field and structural
constants, but through an intermediate stage — so-
called spectroscopic models. Only in such an approach,
experimental energy levels are described in many cases
within the experimental errors. The selection and
interpretation of spectroscopic models is based on the
method of effective Hamiltonian and the method of
effective dipole moments. The application of the
method of effective Hamiltonian to the rotational-
vibrational Schrddinger equation of a multiatomic
molecule reduces to construction and reduction of the
effective rotational Hamiltonian (ERH) in an isolated
or interacting vibrational states.

The ERH can be constructed empirically and then
fitted to a measured spectrum. However, to determine
the force field and constants of the equilibrium
configuration of the molecule, it is necessary to find
theoretically the relation between spectroscopic
constants and molecular parameters. The ERH can be
constructed using different methods of the perturbation
theory, but the method of contact transformations (CT)
is used most widely.

The description of this method and the review of
spectroscopic results, obtained earlier with its help,
can be found in Refs. 6—8. It should be noted that the
presented results were obtained in different schemes of
ordering the intramolecular interactions, and in the
literature there are no relations between these results.
This paper gives a solution to this problem. The essence
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of application of the CT method to construction of the
effective operator of observation is that the operator of
observation is subjected to the same series of unitary
transformations, as the initial, in this case, RV
Hamiltonian. In the formal perturbation theory, the
Hamiltonian is presented as H = Hy + ANH + A2Hy + ...
(or H = Hy+ AV). Expansion of the RV Hamiltonian
(inverse inertia tensor and potential function) in series
in terms of nuclei displacements in the Watson’s system
of designations has the form

HVR = Z Hﬂzn =

mn

Hyi, + Heor + Hyo, (6))

where H,,, is the group of terms with the vibrational
operators (g; or pp) in the power m and the rotational
operators (/o) in the power n

Hyyp = Hyy+ Hzg+ Hyp + ...
Heoy = Hyy + H3p + Hyy + ...
Hyo = Hypp + Hyp + Hyy + ... (6)

The coefficients in H,, have the order of
magnitude of

Xm*2*2n Wyib; (7)

X is the Born — Oppenheimer parameter = Ol =10
n

In (mn) designation, the Eckart rotational conditions?
are equivalent to Hy; = 0.

For low quantum numbers, the Hamiltonian of a
set of harmonic oscillators Hy, gives the dominant
contribution to the matrix of rotational-vibrational
energy. The EH is constructed by consequent contact
transformations by the following scheme:

H=HO + \gMD + 22 + , €))

where H(O = H,,, HD H?) | are higher order terms
grouped in a certain way. The transformed Hamiltonian
has the form

E _— e_l‘)\/ls(/l) e_i)\Bs(S) e_i)\25(2) e_i)\5(1) x
x el‘)\s(1) ei)\zS(Z) ei)\ZS(S) el‘)\ZS(/l) =
:H(0)+}\E(1)+)\2E(2)+ o, 9)
where S(D, s B

selected so that E“), EQ), E@), . have no off-
diagonal matrix elements between wave functions
corresponding to energy levels in the zero order, i.e.,
generators S in the CT method satisfy the condition
<S§M =0 >; < ... >is the operator of separation of the
diagonal part in H(. It should be noted that the
commutator expressions for the operators of the
transformed Hamiltonian H®) and the transformed
operator of observation OW) written in the
nonrecurrent form, have formally the same form.679
However, there is a principal difference between them.
It consists in the fact that the rule (2N + 1) of the

are the Hermitian operators
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perturbation theory is fulfilled when constructing the
EH, whereas this rule is not fulfilled when constructing
the effective operator of observation.6-12

2. Problem of ordering the rotational-
vibrational interactions in molecules

Before  applying the consequent  contact
transformations (9) to the RV Hamiltonian (5), it is
necessary to answer the following questions?:!3:
(1) what order of smallness in A the operator term H,,,
in H® corresponds to or, in other words, how the

expansion H = H(O) + S MH® and the expansion in

the form H = Hyy+ 3, H,y, relate to each other;
(2) to what order in A relate the vibrational and
rotational commutators arising from the common
commutator (the question arises, because N operators
depend on vibrational and rotational operators)

[S, 2] = [SySR, Avhr] =

=[Sy, byl @) [Sk, hrls+ [Sp b Q) [Sy, hyle,  (10)

where Sy(hy) and Sgp(hgr) are vibrational and
rotational factors in S(%), [A, Bl = AB + BA.

Thus, we necessarily come to the problem of
ordering the perturbations H,,, in Hygr (5) (Refs. 7,
12-15). So, in the theory of rotational-vibrational
spectra of quasi-rigid molecules we have to solve the
problem of correspondence

HN) ———— Hyp

between the formal expansion of the Hamiltonian in the
perturbation theory (PT) and the actual expansion of
the RVH. This problem was first formulated by the
author in 1985 in Ref. 7. It is a fundamental problem
of the theory of molecular spectra, and unambiguous
solution of the direct and inverse spectroscopic
problems depends on its correct formulation and
solution. Since the order of contribution to the energy
depends strongly on quantum numbers, this can be
taken into account formally by assigning the orders in A
to the vibrational and rotational operators in H,,, (and

Emn). Okal6 used the scheme of ordering perturbations,
which was based on classification of H,, according to
the orders of magnitude of their coefficients. Bess also
used this grouping for calculating the operator of the
form 72J2 (Ref. 17). Other ordering schemes (Amat —
Nielsen,8 Aliev—Watson!8), excluding the limiting
ordering schemes, 6.7 were analyzed in detail in Ref. 13.

The perturbation operator H,, in the Hyg
expansion (5) can be estimated as having the order of
magnitude A + 0 where f(m) and ¢(n) are linear
functions of powers of vibrational (m) and rotational
(n) operators, respectively.”.12,13 The form of the
functions f(m) and ¢(n) is determined by the scheme of
ordering rotational-vibrational  perturbations. The
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perturbation operator H®) (of the order ANw,)
includes only that group of operators H,,,, for which

f(m) + ¢(n) = N, 1
that is,
g = 5 ), (12)

[m, n]

where [m, n] under the summation symbol means that
the condition (11) is imposed on the summation over m
and n. Application of the CT method to the
Hamiltonian (5), in which all terms are grouped by
Eq. (11)

H=Y 3 HW, (13)

N [m, n]

allows S-operators to be found in any approximation
and their operator structure to be determined. Let us
determine the parameter of smallness of S-operators
with respect to unity.67 It can be shown that the
operator structures of S-operators of the order N (A N)
and the Nth term of the Hamiltonian transformed &
times (eNw.) are determined from the same
equation (11) as the Nth term in the expansion (12),

SNy = 5 s,

[m, n]

(SN Oafom + o), (14)

N N
(k)H( ) = Z (k)H(mn)- (15)

[m, n]
Let the quantity [f(m) + ¢(n)] be named the “A-order”

of the operator term H,,m (or S,,»). The RV
Hamiltonian (1) transformed by the vibrational
variables can be written as

E = Z Z (N)H(rjn\]n) = Z Hmn = o, (16)
N m, n] [m, n]

where tilde denotes the completely transformed
perturbation operator in Hyg.

3. Infinite, but countable set of ordering
schemes

The order of magnitude of the operators Emn and
S, in accordance with the above-said, is determined
by the equations

Hpy DX252 g, D20 g

Smn Dxm—2+2n ymjn, (OI‘ Xm+2n ;fm‘]n)y (17)

where w,;, is the mean frequency of harmonic
vibrations, @, is the mean value of the electronic energy
of the ground vibronic state of a quasi-rigid molecule
@ OX? Wi

If “A-order” of H(,%) is determined as a value
<am + PBn, providing a and [ are integer, then,
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starting from some number N = am + Bn, the operators
H,, and S,, with different operator structure
correspond to the same order. Such schemes will be
called the ordering schemes with integer “A-order.” In
these schemes, calculation by the CT method has a
disadvantage that cross commutator terms like
[S12, [S30, [...11 + [S30, [Si2, [...1] arise.?

Niroomand and Parker!¥ considered different
sequences of S,,, operators from the viewpoint of
inclusion of one operator S, SN) of the general
scheme of contact transformations. They showed that
results for some lower operators in the transformed
Hamiltonian are equivalent at different sequences of
Smn, but only in the approximation of an isolated
vibrational state (see the below discussion).

Watson®20.21  proposed to perform contact
transformations sequentially by the increasing powers
of rotational operators for every power of vibrational
operators.

In Ref. 7, the sequence of contact transformations
being an antipode of the sequence of Watson’s
transformations, was proposed, in which
transformations are performed by the increasing powers
of vibrational operators for every power of rotational
operators. The schemes of ordering rotational-
vibrational perturbations, which form the basis of
Watson’s (Ref. 6) and Mikhailov’s (Ref. 7) vibrational
contact transformations, are, in fact, the consequence of
two possible limiting estimates of vibrational and
rotational molecular energy.

In the Watson’s model, it is assumed that the
rotational energy described by the Hamiltonian Hyy has
the same order of magnitude as the electronic energy of
the ground state, i.e., according to Eq. (17):

Hpy ON0w, Oxix 4w, € - 0, (18)
Hoy Ox%w..

Herefrom we can estimate the orders of magnitude of
vibrational and rotational operators

r 01, JOx 2% =2¢), ¢ - 0. (19)

This model can be designated as an “ultrafast
rotator.” The second Mikhailov’s (M) model can be
identified as an “overexcited oscillator.” In this model,
it is assumed that the vibrational energy described by
the Hamiltonian Hy is comparable with the electronic
energy ,, i.e., according to Eq. (17)

Hyy ON, OX2X 2w, € - 0,
Hyy Ox2wyip DXt . (20)

Herefrom we have estimates of the orders of
magnitude of vibrational and rotational operators

rOx*e, JO1, & - 0. 1)

In this scheme, anharmonic vibrational operators
are automatically separated from rotational-vibrational
interaction in the expansion of the molecular
Hamiltonian:
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M T M
H(VR) =Hy + Hyg = z {HmO + z H(mn) . (22)

mn n

Amat and Nielsen® suggested to consider the vibrational
quantum numbers [ and rotational quantum numbers
(10 as most usable. For the operators » and J this can
be determined by imposition of the conditions:

rOx0, JOx . (23)

Equations (19), (21), and (23) that were found
from model considerations can be extended to estimate
the orders of magnitude of rotational-vibrational
perturbations H,, and S-operators S,,,, as well as
vibrational and rotational commutators. The ordering
schemes based on Egs. (18) and (20) can be called the
limiting schemes of ordering rotational-vibrational
perturbations.” In the ordering schemes applied in the
theory of molecular spectra, A-orders of H,,, (Refs. 5,
8, 6, and 7) are determined in the following way:

M-orders of H,,,(S,) =

On+en  Watson (W)
3 Bn +n  Amat —Nielsen (A —N) 24
Efn +2n  Born —Oppenheimer —Oka (B-0O -0)

Eem +2n  Mikhailov (M).

If, as earlier, A-order is determined as am+ Bn, but
range of o and B is extended to include rational
numbers, then A-orders of the considered schemes can
be plotted as rays in the Cartesian coordinate system
(a, p) (Fig. 1).7:22

¢ ca = BA-N)
p=0.(W) :
~ R

- ®= arctan (B /a)

_B=20(B-0-0)

a=0 (M)

Fig. 1.

The conditions imposed on the orders of
magnitude of vibrational and rotational operators and
commutators®=8 follow from Egs. (19), (21), and (23).
They are tabulated below for the ordering schemes used
in theoretical molecular spectroscopy:

W) |[B-0-0)[a-N] ()

r 1 1 1 X 1€

X~ 2te 1 X! 1 (25)
[p, qlv —i —i ) e

U Jelr | —iX72*E1y  —ily  —iXly  —idy
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4. Vibrational contact transformations
in the limiting ordering schemes

The unitary operators of vibrational
transformations in the limiting ordering schemes have
the form:

) (W) . (W) . )

U{x} —e 123 o2 S TS50 7S
. . (M)

e S

(26)

The sequence order of unitary operators in UM

. . . . (M)
Upt = e 930 ¢8540 o721 o785 310

and U{;} can be written in the form of the following
ordered tables for generators of transformations?? for
the overexcited oscillator (M)

S30 Si0  Ss0
Sy SED SOD 7)
Spp SOP SV

and ultrafast rotator (W)

Sip SO 5OV
Sy SO SOV (28)
S30 5(;\1/) S(gg)

r.

The limiting ordering schemes differ from the
schemes with integer A-order (A-N, B-0O-0) by the
fact that in these schemes the S-operator in every
transformation order consists of one operator S,,,, and
thus cross commutators do not arise at transformations.
Tt should be noted that in the second approximation of
the perturbation theory (m + n < 4) the scheme (M)
coincides with the scheme (B—O-0), and the scheme
(W) coincides with the scheme proposed in Ref. 18,
which can be formulated as the conditions”:

r 01, J O0xY35 0p, gl = - 4
[Ja Jpl = = MYy eapy Jy; A Ox1/3.

Analysis of calculation of Emn 15,”" of high
orders®7:15 shows that from the viewpoint of the
number of commutators the scheme (W) allows one to

calculate, in the shortest way, Hmn (19,,”1) with high
powers of n, and the scheme (M) allows calculation
with low powers of n, but high powers of m. In any
case, calculation in the limiting ordering schemes is free
of cross commutators, which arise in the schemes with
the integer A-order and, especially, in the Amat—
Nielsen scheme, being intermediate between the
limiting ordering schemes (W) and (M). It should be
noted that in Refs. 23 and 24 the rotational-vibrational
Hamiltonian ~ was  presented in  the  form
Hygr = Hy + Hyg, and the operator terms in Ref. 24
were grouped by the Amat—Nielsen scheme. In the
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ordering scheme (M), the anharmonic operators, H ),
are automatically separated in the expansion of Hygp,
and Hyg has the structure similar to those from

Refs. 23 and 24 (Hyr = Yy Hypu(1 = 3y0)). However,
ordering of H,,, is performed, certainly, not by the
Amat —Nielsen scheme. Therefore, it is more logical to
consider the separation Hyg = Hy + Hygr as a certain
ordering scheme that does not differ fundamentally
from the Amat—Nielsen scheme, rather than some re-
definition of the zero approximation.

Let us consider vibrational and rotational series in
the EH: Hyy, = Y Hy and Hyo = Y, H,. Taking into
account that in the limiting ordering schemes the
operator term H,, in the EH is comparable with the
electronic energy w,, we can estimate the limiting terms
of the considered series as:

lim Hmo = lim x!/™ w,, (29)
m - © m — oo
lim Eno = lim X /7 w,. (30)
n - o n - o
Thus, the expansion parameter (smallness

parameter) for ordered operator terms in Heff is
determined by the equations

1

- 1.00... 1
@»fx =

lim ¥ = lim - 1. (31)
[] [

pow  pow =1 _ (999
s O

It is important to note that only calculations in
the limiting ordering schemes lead to representation of
the vibrational or rotational dependences of observation
in terms of infinite series. These dependences can be
presented as some series in terms of vibrational or
rotational operators (or corresponding quantum
numbers) similar to the Dunham series for diatomic
molecules. Based on such presentation of the operators
of observation, it becomes possible to apply the
methods improving convergence of the series, for
example, the method of Pade approximants, and the
methods based on nonlinear transformations of series.2>

5. Problems of indeterminacy and
ambiguity of effective Hamiltonians and
approximation of an isolated vibrational

state

The ERH, constructed in any of the considered
ordering schemes and meeting the condition
[H%fff), Hyy] = 0, where Hyg is the Hamiltonian of a set
of harmonic oscillators, is independent of the ordering
scheme (due to the fact that the Hamiltonian
eigenvalues are independent of the unitary
transformation). At the same time, vibrational unitary
transformation operators depend on the ordering
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scheme, and the operators in different schemes are
related to each other by unitary transformations, in
particular, Uy = T-1UMT.

Note that the effective Hamiltonian in the Amat —
Nielsen scheme can be represented in the form of a
square ordered table HCf(A-N) = 3y . HSN(A-N),
m = n. In any grouping with a finite A-order, i.e., with
A Ox4/? (a and b are integer), the EH degenerates into
either column or row.26 The process of finding
rotational-vibrational energy levels and molecular
characteristics from experimental data through the
stage of spectroscopic models and spectroscopic
constants is based on solution of two fundamental
problems of molecular rotational and vibrational
dynamics:

1) indeterminacy in expansion of the molecular
Hamiltonian on ordering (grouping) of intramolecular
interactions, when constructing the EH;

2) ambiguity of the EH, when constructing the
reduced EH.

The two-stage character of calculation of the RV
energy levels is illustrated in Fig. 2.

eff :
Hyp (grouping)

Ambiguity

Indeterminacy

Fig. 2.

The parameters in the reduced Hamiltonian are
connected with the parameters in the effective
Hamiltonian as

J .
h = (g)heff + Dh(()S). (32)

The dependence of the reduction generators on
groups of rotational-vibrational interactions is discussed
below.

Besides, the operator of the effective dipole
moment constructed in accordance with the principle of
transformation completeness?-13 also does not depend on
the applied ordering scheme (in the absence of
accidental resonances), i.e., the relation between the
spectroscopic and molecular parameters is unique. This
conclusion follows from the fact that the scalar product
is invariant with respect to unitary transformation, i.e.,
conserves the length of a vector. In the case under
consideration, such a vector is the matrix element of
the dipole moment, modulo square is proportional to
the partial probability of a transition (or line strength),
which is just observable.

The formulated statements on independence of the
ERH and the operator of effective dipole moment on
the ordering schemes take place in the approximation of
isolated vibrational states and are described by the
following equations:
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H(D = U HyRU;

U1 = ¢7iSW mis@ o-is® . (33)
[H(D, Hyl =0 ;
(HED = () HD.
From the definition
Heft) = z <H2m, > = z E2m, n (34)
mn mn
and Eq. (33) it follows
(_(/)EZm, n= ((]')EZWL, n (35)
Mt = emiSW pp eis™
(g)M(eff) = (g,)M(eff). (36)
And from the definition
MCeff) = S }Gmn (37)
mn
and Eq. (36) it follows
(_(/)Ian = (g')}amrr (38)

Relations (35) and (38) do not keep true in the
presence of Fermi or Coriolis accidental resonances (in
the energy spectrum of a molecule). In other words,
they do not hold in the presence of accidental
degeneration for harmonic vibrational frequencies
(fundamental or combination) or zero-order rotational-
vibrational levels related by anharmonic or rotational -
vibrational interactions of the order of detuning
between vibrational or rotational-vibrational energetic
levels. Classification of natural and accidental
resonances in rotational-vibrational molecular spectra
has been proposed by Nielsen and Amat.27

6. Determination of theoretical
uncertainties of ordering
for EH and EDM

Relations (35) and (38) indicate independence of
Emn (M,,,) from (g) in the absence of accidental
resonances. They can be formulated in other form, i.e.,
with the separated contribution from transformation of
transition from one ordering scheme (g) to another
(¢"). Individual terms in H(® and M can be
presented as

@ _ B Hgg
ngn_ﬂngn +hmgng )

M) = M9 + Ho-. (39)

Vibrational S-generators also can be presented as



22 Atmos. Oceanic Opt. /January 2001,/ Vol. 14, No. 1

S =580 + SS9, (40)

The parameters h,(,iln 99 M(q”q), and S((/ -9 ¢

be determined as uncertamtles of grouping or
uncertainties of ordering the operator terms in the EH
and DM, as well as vibrational generators of the CT

method. The conditions imposed on h,,;’n 2 Igf,fn (/),
and SY-9) are equivalent to Egs. (35), (38),
<sWs — o

<}[l£gr]r;ng’)> = [kgﬁg’) = 1@(51 7 =

mn

<5(‘7 ‘7>>—0 (41)

m,n
As was noted above, Egs. (35), (38), and,
consequently, (41) are inapplicable to analysis of local
perturbations in the energy spectrum due to accidental
resonances.

7. Equation for vibrational generators of
the CT method in different ordering
schemes

The equations for vibrational S-operators (9) of
the method of contact transformations in different
ordering schemes can be derived either from definition
of vibrational unitary transformations (26) applying the
“unravel technique” to exponential operators28 or from

the definition of Hmn in the commutator form. That is,
57(7;1;(1) and h((/ =9 can be found in such a way. In the
third approxunatlon (m + n £5), the equations for S,
in the limiting ordering schemes can be found from the
simple equation:

ed eb = b ea K1 K2, (42)

where

Ky =la, bl, Ky=1% (lala, b1] + [bla, bID.

Derivation of this equation is similar to derivation of
the general Murray equation or Zassenhause equation. 28
Taking into account Egs. (26)-(28) and (42), we can

obtain S f,? n 9 for the limiting ordering schemes:
m+n=4:

S%%W) =1 [Sy1, Spal,

SHWI =[S0, Spol, (43)
SHW = 4 1850, Sl
m+n=235:

o . 1
S =i 1855, 5371 =3 [So1, 1S4, Spal],

N . 1

SO =i [Sg0, Sa1l - 75 530, [S30, S2111,
o . 1

SHW =i S50, ST+ 5 [[S21, Sial, Szl +

+ i[Sg\fV), Stal + [1Sa21, Ss0l, S12l,
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SOW = iS50, SSVT + iS40, Spal + il Sy, Spalr +

1
+ 5 [S21, [S30, 2111 + [[S30, S121, S30],
- 1
o5t =5 [S12, [S21, Sl (44)

In Ref. 18 the operator of sextic distortion was
calculated both in the grouping (A-N) and in the
grouping that coincides in the second approximation of
the perturbation theory with the grouping (W). It can

be shown’ that SN = S + 1150, 1801, Spall.
With this equatlon it can be readily found that (A N
H(A N 5 [[S12, [S21, S12]1], Hpz]. However, since

S,n meets the condition (41), <Sps>9797 =0. It

<E(W)> = <H(()2_N)>. The

equality <S(()%”g')> =0 can be easily proved by direct
calculation of the commutators.

The Amat—Nielsen scheme was widely used in
calculating the spectroscopic parameters in the ERH
through molecular constants.8 Therefore, it is
reasonable to present the equations for S-operators in
the limiting schemes and the Amat —Nielsen scheme. In
the second approximation of the perturbation theory,
these equations can be obtained by generalizing the
well-known Baker — Campbell — Housedorf equation?8
for the case of three operators 15

follows herefrom that

e eb ¢ =

=expla+b+c+3(a, bl +[a, cl +[b, c] +..)}.(45)

The equations for S,,,(m + n =4) in the Amat—
Nielsen grouping and in the limiting groupings have the
form:

S? N S(W)

i
+5 821, Sl = S+ 3 5 LSt Satl,

A-N W) , 1 M) |, 1
Sy =55 + 5 [S12, S30l = SHY + 5 [S30, S12l,
+ % [S30, Sa11 = S5 + % [S21, S30l,
SN = sV = g0 (46)

Or, in the other form:

AN _ o(W
S31 = 534

55,31 N-W) _ Sf}’?i N- M),

S 0 = O Ky g = (W), (VD) (47)
where the coefficients C,(,ﬁl N-9 and commutators Ko
are

Co 9 = _11//22’7 ((:__I\I;I)) N ((\1;,4)) )
Kyz = 1[S12, So1l, Koo = i[S2, Szol, Kz = i[Say, %{g)

In addition, for the operators S,,, (m +n =4) in the
groupings (A-N), (W), and (M) there exists the
generalizing equation:
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A-N W M
SN =2 (s + SO, (50)

This equation was already found in Ref. 13 based on
the commutator definitions of H,, in the three
groupings: (A-N), (B-0O-0), and the grouping from
Ref. 18. As was mentioned above, the last two
groupings in the second approximation of the
perturbation theory give the results coinciding with the
results in the limiting groupings (M) and (W),
respectively.

Thus, the above equations (43)—(50) were derived
only from the definitions of the unitary operators of
vibrational transformations (26) following from
different ordering of the expansion of the Hamiltonian
Hvyg, by applying the unravel technique to exponential
operators.

8. Determination of accidental
resonances in spectrum

When applying the equations for transformation
generators (S-functions) obtained in Section 7 to
analysis of random resonances in a molecule, the total
operators S,,, should be replaced by Smn Asterisk (*)
means that resonance denominators are excluded from
the considered operators S, in the process of their
calculation.8 Let us determine the accidental resonances
in the molecular energy spectrum using the function of
harmonic frequencies

P
P(w) = ) m;0; w;, (51)
=1

where w; are harmonic frequencies of vibrations, m; are
natural numbers, o; = 1 are signed variables, P is a
polyad of vibrational states.

An accidental resonance in the molecular energy
spectrum is determined by the condition imposed on the
function

®(w) =0 or O(w). (52)
The equivalent form of this condition, used in the
spectroscopic literature, is the following:

P
m; w; = zmr+]’(*)r+j~ (53)

k=r+1

M-~

J

It should be noted that the resonance condition
can be rewritten in other form

P
QD(Q) = Z m; O;
i=1

Q; = 0 or ©(Q), (54)

if the vibrational Hamiltonian of the form

HO = H,y, + <E40> + <E60> + . (55)

with eigenvalues

E(O) Q,(V; +g,7 Q; = + Xii * Xiiii - (56)
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is taken as the initial approximation.

It is important to emphasize that the numbers m;
denote the degree of the vibrational ladder operator %’
(a]c»yf =q; —i0;p;), i.e. operators (a¥)™ in the operator
of resonance interaction, and the signed variables o;
entering into ®(w) meet the condition

oG=1,..,1n=- ,p). (57)

It follows from Egs. (53) and (57) that the
dominant contribution to the operator of resonance
interaction is determined by the operator of the form

07+k(k=r+i,

P
O I'I (ai™ 0 M
=r+

-0; m
"G

The technique of projection operators allows
separating the operator of resonance interaction from
the general-form operator in the ERH

0711 G”Z
q*ZH 2

with summation over polyads.

. 0, g (o) g,
”f/ a,’t a,)? a,", (59)
ng

The projection operator can be represented as a
function of &-symbols for character variables o;
A(Poliad) =
my m, r P
:aEI1501 Opg** aEI 150,,,o(a + Zf;fni) ].D1501 % b =I:|+ 15—01 \Opsr
(60)
Then nonresonance part of the operator V equal to
V) can be derived from Eq. (59) by introducing
(1 — A) symbol, i.e.,

V) =V - V(Res) = V(1 — A). (61)

For two interesting particular cases of double

(0w, Owy,) and triple (w, Ow, + @, or , 02w,)
accidental resonances, the symbol AP is determined as:
A(2) = 60{1 Ony 60(1 Ony 604, -Op? (62)

A(S) = 6011 Ony 6Ga Ony 6Gu Ong 6011’ -Op (63)

where nq, ny, and ng are summation indices in the
interaction operator V.

As was found in Section 7, the determined
operators in the EH can be presented as

H = B9 + 1o, (64)

where 7979 are, in essence, theoretical indeterminacy
of ordering of the operator elements in the EH. They
vanish in the approximation of an isolated vibrational

state, h,(,fn g)>*0, and depend explicitly on the

function g(w) (51). Based on determination of the
coefficients in
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B(op = AW =

ny ... Ny,

m n
g e A Ny, (6)

o Mgy m; .
m ij=1

where 0; = £1, 0; = x, y, z (or 0, +1);

g(w) — o W)hgi O g oo Oy 66)

s My

we can classify accidental resonance interactions as
follows:

1) strong interaction (S): Kg(oo) = 0, an example of
this type of accidental resonance is the dyad (vy, v3) in
methane-type molecules,

2) medium interaction (M): g((.o) = O(w), an
example is the dyad (v, v4) in methane-type
molecules,

3) weak interaction (W): g(w) = @, an example is
the triad of resonance states (v4 + Vs, V3) in asymmetric
triatomic linear molecules XYZ.

The last type of the resonance interaction can
occur at low values of quantum numbers. In
calculations, it can be treated by the ordinary method
of perturbations. In other words, the situation in the
energy spectrum can be treated as a very weak (VW)
intermode resonance interaction. However, in the
energy region formed by combined modes, i.e., at high
quantum numbers, the classification of accidental
resonances should be corrected. Let us consider some

examples of double and triple resonances in molecular

models. The resonance parameter in hglﬁW)

expressed through molecular constants as:

can be

- R, (w, — wy)?
gdyad(w) =M - W)hc?b o= z Db m [ = :
m

(w; = wp)? = @yl
(67)

It follows from Eq. (67) that at strict equality
W, = (approximation of an isolated vibrational
state) ®Pgyad(w) = - wylig;, ©=0. This confirms the
results on independence of transformed operator terms
in the EH from the ordering schemes in the absence of
accidental resonances in the energy spectrum.

Let us consider the triple intermode resonapce
using the resonance w; + wy = wy for the operator ﬁ;
in XYZ linear molecules as an example:

g(w)triad =M - W)h?g _30 -

_ I m(_R% + yRign)((’% Ty - %)Gm
2 (—a + yoy,) (@ + 03 — yoy,)

m, Oy

. (68)

The result following from Eq. (68) is analogous to
the result for double resonances exactly at the strict

equality oy + w) = wy

(g(w)triad =M - W)h?g _39 =0. (69)
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9. Problem of reduction and ordering
the series of rotational-vibrational
interactions

Let us now consider the problem of determining
the operator forms of S-generators of reduction. When
constructing the EH for an energy region of accidental
resonance interactions, according to the existing
concepts,’-8 the vibrational generators of the method of
contact transformations (vibrational S-functions®) are
replaced by the generators S*, S, - 55;,)1 Thus, in
analysis of accidental resonances, the total S-function is
presented as a sum S, = S$) +S,,,(Res), in which
Ss,:,z does not depend on resonance denominators and
Sn(Res) does. In the chosen ordering scheme, the EH
for the energy region of the accidental resonance
perturbation under study can be written in the form

H=H® & Hres). 70)

The same is true for individual terms of the EH
(g)ﬁmn = (g)ﬁ o+ (g)Hmn(Res), 7D

where the subscript ¢ in (g)gmn denotes the ordering
scheme, in which the operator contribution in the EH is
calculated.

In accordance with the developed statements of
the theory of related ordering schemes, both total
vibrational generators (S-functions) S,,, and their
nonresonance SS,;‘,Z and resonance S,,,(Res) parts also
depend on the applied ordering scheme. The following
important circumstance should be noted. Since the
resonance S-functions, S,,,(Res), meet the same
general requirements as the reduction generators,
namely, invariance with respect to the Hermitian
operator and alternation of sign at the time reversal
operation, it becomes possible to determine the operator
structure of S-generators of reduction at the stage of
construction of the EH. This procedure of determining
the structure of reduction generators can be performed
by replacing the coefficients in (,)S,,,(Res) and

(groupmg)C:::(ZOi w n; = {%(w)}) with some parameters

in S,,,(reduction) and (;)S, which are determined,
when processing spectra. These arguments can be
illustrated by the following scheme:

(grouping)Sinn( Res) (SmnA(n) )
| I

| |

— (grouping)Smn(reduction),

0
(g‘muping)cm(zci w;n;= {6(00)}) - (g)C: ::(redUCtiOH) .

(72)

It should be emphasized that the conclusion on
dependence of the reduction parameters on the ordering
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schemes applies only to off-diagonal elements of the
operator reduction matrix
[:]Saa (@Sab - ]

(grouping)S (reduction) = E Sbb E (73)

The problem of indeterminacy of the EH will be
analyzed in greater detail when considering specific
types of accidental resonances and molecular systems.

10. Effective dipole moments of
rotational-vibrational transitions in
molecules

In accordance with the concept of related ordering
schemes, it is possible to construct asymptotic

subsequences Zn Igmy , (different in the order of
magnitude) in the operator of effective IR or Raman
moment Meff of a rotational-vibrational transition. The
unitary relation between these subsequences is
determined exactly (in the method of construction of
Meff by consequent contact transformations, this
relation is determined by applying the unravel
technique to exponential operators). In the limiting
schemes, Meff is set as a series of unitary (vibrational)
operators written in a symbolic form of a matrix table.
It can be readily seen that at such a method of setting
the series of transformation generators, each of the
transformed operators in Meff is expressed through
transformed effective operators of a moment of lower

powers. In addition, 1@5% can be presented in the form

195,?,3 = 1955,) +1E}f,lg,[9'). This form of presentation of
the operators in Meff is useful when estimating the

theoretical indeterminacy of ordering IQ,(ngnﬂg') of the
effective operator Igmn. In this paper, we propose the

following algorithm for constructing the operator 19,”,1:

I. The first transformation is performed with the
generator S, (i.e., the operator form of S,,, is
identical to the form of M,,,) assuming that all
previous  transformations of lower order and,
correspondingly, lower powers of 7”J™ have already
been made. It is clear that we have the rotational
commutator with the first term of expansion of the
initial moment M;

II. The second and following transformations are
performed in accordance with the chosen limiting
ordering scheme on the assumption that all previous
unitary transformations have been already made. Thus,
we propose the algorithm of constructing Meff based on
the inverse sequence of unitary transformations.

What is the profit? Some technical difficulty of
the proposed inverse method of transformation is
compensated by the following more important result:
the transformed operator of structure #2j7 (M) is
directly written in the form of a function of the
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operators of structure #Ji of lower powers
(m+mn=z=i+j ). This result seems important when
applying Meff, calculated in high approximations, to
both construction of spectroscopic models of moments
and use of available spectroscopic information on
moments obtained from analysis of either spectra of
other type or rotational-vibrational dependence of
moments of the spectra under study.

Example: Moments of first
combination tones.

overtones and

The rotational and vibrational subsequences 19
(AV = 2) are set in (W) and (M), respectively, by the

series 2. (2\’}\;) and 2 93,,,0. In the considered
example, most interesting for us is the relation of the

operators IG 5,%’,2 with the initial molecular data:
1@21 = My + il Sy, Mol + il S30, Myyl,  (74)
MG = its90, My) +ilsE, Myl - il S, Myl +
. 1@ . 1
+ il S50, Myp] + il Sa1, Mol =5 [Sa1, [S21, Mogll, (75)

where
’912 =i[S12, Myl + il Sy, Myq],

53/[) = i[Sggﬂ, My] + i[5§11\4), Myy] + i[Sy9, Myq] +

+i[Soy, 1@211 + % [S21, [S21, Mogl] - (76)

It is seen from these equations that the effective

operator 19(292) is a function of either 1921 or IG 12. Thus,
in analysis of F-factors in intensities of the first
overtones and combination tones we can use both the
data obtained from the results of measurement of

integral intensities (1@21) of these tones and the data
on F-factors of fundamental bands.

In this section, we present the concept of Pade
approximants in the theory of intensity as a part of the
theory of linked schemes of ordering intramolecular and
intermolecular interactions in multiatomic systems. As
an example, we use the effective dipole moments for
rotational transitions in the ground and excited isolated
vibrational states. The operator of effective moment of
rotational transitions in isolated vibrational state, in
accordance with the results obtained in Sections 6
and 7, satisfies the equations

M(R) = <1%>,
[M(R), Hyl =0 77)

and can be expanded into a series

M(R) = My, + ZHon"‘ z/azm,n(R). (78)
In the ordering scheme of ultrafast rotator (W),
H(R) is represented as the following ordered table:
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Mo, 1903 1905
]@21(13) M 2(R) M 23(R) . (79)
M (R) M(R) 1@43(1%)

In the ordermg scheme of overexc1ted oscillator

(M), ZG(R) is represented as the following ordered
table:

M01 1921(13) HM(R)

1@22(13) 1942(13) 1@62(1%) (80)
IGOS 1923(1?) 1943(R)

There exists an infinite, but countable set of
perturbation series for the effective operator of dipole
moment. These series are connected with different
schemes of ordering RV interactions in molecules. In
this set, the cases (79) and (80) corresponding to the
two limiting ordering schemes can be separated for the
effective dipole moment of rotational transitions. The

effective operator 1@ (R) in the limiting ordering
schemes is determined by the following series:

MR = 5 (Mg, + Mop(R) + My(r) + .} =

:Mo1+1%03+~~ 0t .., (81)

H(M)(R) = § {Hﬂﬂ + HmZ(R) + HmS(R) + } =
m=0

.1@03+ s (82)

For analysis of the series (81) and (82) of interest from
the viewpoint of application of Pade approximants, it is
convenient to introduce the generating series of the
form

:M01 +1@21 + ..

g=Co+ Cix + Cox?2 + Cx3 + Cpxt + ... . (83)

Pade approximants for this series are well-known and
can be applied to the problem under study after some
adaptation. The model (W) is characterized by the

correspondence Moz = Cs, ]@21(1‘3) =Cs, ..., and the
model (M) is characterized by the correspondence

1@21(R) = Cy, IQOS(R) =Cs, ...
of the effective dipole moment H(R) consisting of

for the model operator

three terms My, 1%21(}%), and 1@03(13) in accordance
with Egs. (79) and (80).
As in the case of the effective operator of

quadrupole bond for IQ(R) in the ground and excited
vibrational states,?2 we have the following equations
for the first diagonal Pade approximants in the limiting
groupings. In the grouping (W) [model (I)], the

diagonal Pade approximant for IG (R) has the form
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I (My)?
01 .
1@03 - 1@21(}3)

[model (II)], this

(84)

In the grouping (M)
approximant has the form

(M (R))?
My (R) — My

The equations for the operators 1921(}3) and

1@03(13) entering into Eqgs. (84) and (85) of the Pade
approximant through molecular constants have the form

1@21(]3) =

My + (85)

O¥wO 1 PO 0O
Z E})q12 d E q)ijm EMTBAUE)\N, (86)
1@03(13) =

Z Saszs(lie)aeasyﬂ’a JpAsy (87)

oy Py
where (W)e and (W)e are the first and the second
1 1

derivatives of the dipole moment over dimensionless
normal coordinates, ~®;;,, are cubic anharmonic
constants, ), are harmonic frequencies of vibrations,
(He)y are components of the equilibrium dipole moment,
B?,ZB are
antisymmetric tensor, Sgpy are parameters of the
reduction generator Sy3, Ag are the directional cosines.

It should be noted that the Pade approximants
(84) and (85) have meaning only for the selection
rules, to which the operators My(R) and My3(R)
satisfy simultaneously. In particular, for symmetric-top
molecules such selection rules for the projection of the
total angular momentum onto the symmetry axis are
the well-known selection rules Ak =0 for allowed
transitions.

The Pade approximants (84) and (85) are
constructed of different rows (or columns) of the
ordered tables (79) and (80). Let us analyze the models
I and II based on the general estimates of the orders of
magnitude of various parameters in the effective dipole
moment operator

rotational constants, Capy is a unit

M =, (88)
where A is the matrix of directional cosines;
= z Hmn; (89)
mn

and

H=3 . (90)

mn
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The orders of magnitude of the effective dipole

operators la and EIJ’”" are determined by the
equations913

]an = XM= 2+ 2n qm Jn— 1A (6610) (91)

and

Emn = xm +2n qm Jr A (eao). (92)

From estimates (91) and (92) it follows that the
model I in the version (84) has a singularity in units of
J in the region J. =x2? and does not represent the

behavior of IQ(R) in this region and the behavior of
M(R) at small J up to J because of a singularity in
denominator. The model II in the version (85) also is
of no interest for low J up to J, as follows from the
estimates (91) and (92), and it is some variant of the
polynomial model My + My1(R) in this region.

It is important to note the following circumstance
concerning the application of the method of Pade
approximants to the effective dipole moment operator.

For Meff = 19, IQ(R), in particular, is presented in the
limiting groupings as an infinite series in terms of
rotational or vibrational variables for any elementary
excitation. These series, like the series (81) and (82)
for M(R), constructed by the perturbation method,
must satisfy the conditions of applicability of the
method of Pade approximants. Thus, this method can
be applied to the sequences of rows in the models (W)
(79) and (M) (80).

Application of the method of Pade approximants
to effective centrifugal dipole moments of the highest
orders for the methane molecule is considered in
Ref. 26. Let us present the first diagonal Pade
approximants describing the rotational and vibrational
dependences of the equilibrium dipole moment:

(W)

(My3)?

My + , 93

017 Moz = Mys ©3)
(M)

(M 51(R))? on

M01 + .
}921(}3) - }941(}3)
For Egs. (93) and (94), as well as for the similar
equations (84) and (85), the requirement of

simultaneous correspondence of all effective dipole
operators entering into Pade approximants to the same
selection rules is valid.

Conclusion

This paper is devoted to physical principles and
application of the theory of linked schemes of ordering
rotational-vibrational  perturbations in  quasi-rigid
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molecules. Only this theory allows the effective
Hamiltonians and effective operators of observation to
be presented as infinite series in terms of components of
the rotational angular momentum for an elementary
vibrational perturbation and vice versa. Expansion into
infinite series is used everywhere in mathematical
analysis of scientific problems. However, no attempts
have been undertaken by now to apply methods
improving convergence of convergent series and
summation of divergent or weakly convergent series to
solution of the problems of rotational-vibrational
spectroscopy of multiatomic quasi-rigid molecules. This
theory will be applied to solution of the direct and
inverse spectroscopic problems for specific molecular
systems.

Application of nonlinear transformations to the
series, obtained by the perturbation method within the
framework of the developed concept of linked schemes
of ordering the rotational-vibrational interactions,
significantly extends the list of spectroscopic models for
analysis of IR and Raman molecular spectra, as well as
vibrational and rotational dependences of physical
parameters. Thus, this approach is beyond the scope of
traditional polynomial models.

The experience accumulated in application of
nonpolinomial models29-34 confirms the need in
development of physical and mathematical principles of
the theory of ordering series of intramolecular
interactions.

The following problems have been solved in this
work:

1. It is justified that the range of values of
vibrational and rotational quantum numbers in the
problem of selection of spectroscopic models, different
from the Amat —Nielsen model, can be extended.

2. The problem of correspondence between the
expansion of the formal and initial rotational-
vibrational Hamiltonians of a quasi-rigid molecule is
solved.

3. The limiting schemes of
intramolecular interactions are introduced.

4. Tt is proved that the effective Hamiltonians for
polyads of vibrational states depend on the ordering
schemes.

5. The rules for determining the operator structure
of reduction generators are obtained.

6. The effective Hamiltonians and the effective
operators of observation are presented in the form
including the separated contribution due to
perturbation ordering; it is proved that this
contribution vanishes in the approximation of the
isolated vibrational state.

7. The unravel technique is applied to exponential
operators when deriving equations for vibrational
transformation generators (S-functions) in various
ordering schemes.

8. The algorithm is developed for constructing
effective dipole moments in the limiting schemes of
ordering RV interactions.

ordering  of
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