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The processes leading to expansion of a vapor-gas cloud produced by the action of laser radiation
on a refractory particle are considered. Cooling of the vaporized substance due to the expansion causes
the overcooling of vapor and its partial condensation. However, the overcooling does not disappear
completely and differs somewhat from zero value that corresponds to the saturation state. This difference
is most significant in the case with small particles. We propose a criterion for determining the starting
point at which an essential deviation from the saturation state occurs.

The action of high-power laser radiation on a
refractory aerosol particle can be accompanied by
warming up of the particle substance to temperatures of
several thousand degrees as high. At such temperatures
the vaporization completely suppresses heterogeneous
combustion, because of the displacement of the oxidizer
from the particle surface, and thus it mainly governs
the changes in the particle size. The vaporized
substance spreads at a high speed (of the order of local
speed of sound in the vapor) and forms a vapor-gas
halo around the particle. If we ignore the processes of
homogeneous combustion at the edges of the halo or
consider the case of expansion of a substance into the
inert atmosphere or vacuum, then we should consider
recondensation of the vaporized substance that takes
place due to cooling of the vapor because of its almost
adiabatic expansion as the basic process which can
cause a change of the composition of expanding vapor-
gas cloud. Two tendencies can be considered in the
formation of secondary aerosol. First, it can be
considered as a way to form aerosol particles of very
small sizes in the nanometer range. Second, we can
consider it as a process causing dissipation of energy
added from a laser beam owing to the attenuation of
radiation by secondary particles.

Earlier such a problem was solved by use of the
thermodynamic approximation! that, as it will be
shown below, is quite rough approximation for particles
of natural atmospheric aerosols, i.e., for particles with
the sizes up to 50 pm.

As numerical estimations for the regimes of
developed vaporization show the concentration of
atmospheric gases near the surface of a particle
practically equals to zero, and the high-speed expansion
can be accompanied by the appearance of a shock wave
(abrupt difference of thermodynamic parameters?) at
certain distance from a particle. This allows one to
divide the space around a particle in two regions, in the
case of the substance expansion into the atmosphere.
The solution in the region between the particle surface
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and the shock wave front can be constructed using the
same equations as in the case of expansion into vacuum.
Considering the expanding cloud to be a single-
component substance in a biphase state (with the
possibility of interphase transitions) and ignoring the
heat conduction of the mixture, as well as viscosity and
pressure diffusion, and reducing the heat transfer to the
stirring (that does not distort the result too much), and
also using the well-grounded approximations of quasi-
stationarity and spherical symmetry3 we obtain the
following system of first-order differential equations:
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here p. and p, are the densities of the substance in
condensed and vapor phases, 7 if the radial variable, v
is the average mass rate of expansion, J is the velocity
of interphase exchange, my is the mass of atom, P is the
pressure, T is the temperature, C‘C, and Cy, are the heat
capacity of condensed and vapor phases for constant
volume, L is the specific heat of condensation, I(r) is
the number of nuclei arising in a unit of volume per
unit time, ¢g(r, #) is the number of molecules in a
secondary particle formed at a point with the
coordinate 7 and reached up the point with the
coordinate 7.
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A question on the correct statement of the boundary
conditions for the flux of expanding substance is very
complex within the given problem. The difference
between the thermodynamic parameters, which occurs
near the surface of a particle that is intensely vaporized
and is connected with the “Maxwellization” of the
flux,4 causes significant overcooling in the flux and, as
a result, recondensation of the vaporized substance can
occur. Under that strong overcooling 6=(T),~
-1/ T,=0.3 (Tp is the temperature of vapor saturated
at a given density) it is only time that is needed to
remove it by the formation of nuclei
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here a is the radius of the initial particle, ny is the
number of molecules that constitute the secondary

particles, © is the mean velocity of vapor molecules, g,

is the number of molecules in the critical nucleus. This
allows one to judge on the rate of the given process in

a globular layer with the thickness dx O (Atov) 00.1a.

A smallness of thickness of the layer of nucleus
formation allows one again to reformulate the boundary
conditions of the problem relative to the surface of a
particle
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where j is the flux of vaporized substance, and the
index s points the magnitudes of values near the surface.

Refining the boundary conditions, which decreases
the initial supersaturation down to zero, allows us to
write the expression (5) for the rate of substance
condensation under expansion in a more simple form. It
is supposed within the framework of the approximation
of monodisperse composition (N identical nuclei of
solid phase are formed) that the nucleus-formation

occurs at the initial stage only
T
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Here ag is the size of a vapor molecule, k is the
Boltzmann constant.

Completing the system (1)—(5) with the
characteristic equation for gas phase P = p kT along with
the boundary conditions, we obtain a mathematical
simulation of the problem.

Let us sum and integrate two first equations from
the system (1)—(5), thus obtaining the law of
conservation of  flux = 41w2(p, + p.). In the
penultimate equation for energy (4) we can neglect in
its right-hand side the difference between the specific
heat capacities of vapor and condensed phase, then the
equation can easily be integrated
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here ¢ is the total flux of energy from a particle.

The relationship between the volume of a single
molecule (w) and the volume of a secondary particle
with the radius @y, and also between the concentration
and condensation degree [B = p./(p. + py)] is

B(pe + Pe)- (10)

Also for the pressure of saturated vapor we can use the
expression
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where P, is the constant value.
Then the expression (8) for the condensation rate
takes the form
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Performing a substitution of variables as follows
below

=—a/r, 0= /vy, (13)

we obtain two algebraic equations and two differential
equations of the first-order
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where Ty and P, are the temperature and pressure of
the environment at the infinity or the characteristic
temperature and pressure, vg = jkTo/(4Tw2P,) is the

characteristic velocity, H = wo(T)j / (4Tuag.03).

We substitute the pressure in the first equation
with the third one then differentiate the second
equation (15) (to exclude the derivative of
temperature) and obtain the system prepared for
calculations, which is formed from the equations (16),
(17), and two equations that follow:
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Solution of this system which is sought over the
whole space of values of the coordinate [—1; 0] is the
solution of the problem on the quasi-stationary
dispersal of a vaporized substance into the vacuum and
allows us to take into account more correctly the
change of the condensation rate which occurs due to the
decrease of vapor density under the expansion. Solution
presented in Ref. 1 has a disadvantage in the sense that
the pressure is assumed to be equal to the pressure of a
saturated vapor.

However, at a certain distance from the surface of
a particle the process of condensation ceases and
“hardening”® process starts. As a criterion of the
condensation cessation we can use the point, at which
in the stage of the still going on expansion the effective
number of collisions among the vapor molecules reaches
unity
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where [ = (\[21d2py)~1 is the free path. If we pass from
the integration over time to the integration over the a
spatial coordinate we obtain
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Ignoring the change in the rate after the onset of
“hardening”, what is physically justified, we obtain
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To compare the results, we construct the solution
of the system (1)—(5) assuming the pressure to be equal
to the pressure of saturated vapor. Consecutively
excluding from the equations the pressure and both
concentrations (with the characteristic equation and
Eq. (11)) we obtain one algebraic equation and one
first-order differential equation
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One can see from the equations (23) and (24) that
their product enables one to exclude the spatial

variable and to obtain the differential first-order
equation that relates the rate to temperature
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Hence, integrating the equation (25) in the sense
of decreasing the temperature, that is physically correct
under conditions of expansion, we can construct the
dependence o(T) from which we can directly determine
the corresponding dependences v(r) and T(r) using the
equation (24).

Let us normalize the system of equations (23)—(24)
by analogy with the Eq. (13)
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Basic results of the joint numerical solution of the
systems of equations (16)—(19) and (26)—(27) for
various sizes of the initial particles are presented in
Figs. 1 and 2.
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Fig. 1. Dependence of the condensation degree of vaporized
substance (B) on the inverse distance to the initial particle
(—a/r) for its wvarious sizes: 10 (7); 50 (2); 100 (3);
200 pm (4); 0.5 (5); 1 mm (6); the saturated vapor (7).

The solutions show that in the flux of a gas, which
is expanded from vaporized primary particles with the
size @ <50 um practically no recondensation occurs,
and the value of condensation degree at a large distance
from a particle is a little bit larger than its initial value,

e., the flux is practically a single-phase one. For large
particles with the size @ =250 um the condensation
degree achieves 30%, and the vapor at a considerable
distance has time “to watch” the supersaturation. These
results are confirmed by the calculation of x. in
accordance with the relation (22) too.
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Fig. 2. Dependence of the overcooling in the flux (8) on the
inverse distance to initial particle (—a/7) for its various sizes:
a =10 (1); 20 (2); 50 (3); 100 (4); 200 (5); 500 um (6).
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