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We describe here three possible schemes of the laser reference star 
formation, namely, monostatic, bistatic, and intermediate. We also determine 
here limiting potentialities of methods of correction for random tilts of a 
wavefront from natural star using a signal from a laser star. The monostatic 
scheme of the laser reference star formation is shown to be totally inapplicable 
for these purposes. The capabilities of the bistatic correction scheme are 
estimated. Then we show the possibility of using an intermediate scheme. 

 

Among the problems that seriously challenge the 
investigators of adaptive optical telescopes is the 
need for use of reasonably bright stars as reference 
sources, since the telescope wavefront sensor, as a 
rule, needs for a large amount of energy of star 
radiation to provide its proper functioning.  The 
requirement to the reference source energy as well as 
the necessity of simultaneous staying in one isoplanar 
area with the image of a star being studied (or any 
other space object) and of a reasonably bright 
reference star, provided allowing for the fact that the 
atmospheric isoplanatism angle is very small (in the 
visible range along the direction to zenith this angle 
is 10″–15″) essentially decreases the percentage of 
sky coverage with this telescope.  

The investigators of adaptive optics solved this 
problem when using the focused laser radiation 
guided from the Earth and backscattered by the 
atmospheric inhomogeneities,1–3 namely, elastic 
aerosol scattering at 8–20 km altitude or a re-
emission at 80–100 m altitude from the atomic 
sodium clouds.  

The problem of forming of a laser reference star 
is in fact a combination of many scientific and 
technical problems to be solved, such as design of a 
specialized laser system, choice of an optimal altitude 
for the laser reference star, measurement of the phase 
of laser radiation reflected by the atmosphere and, 
finally, the selection of the control algorithm. 

In this connection, of particular interest is the 
publication by Dr. Robert Fugate, a well-known in 
the U.S. specialist in laser systems, in which the 
author states that by the time of his publication4 
(February 1996) no laser reference stars, using the 
scattering from the atomic sodium clouds were 
operating successfully, were unknown to him. Here it 
should be noted that it is just sodium layer reference 
stars which can provide obtaining the best 
characteristics of the adaptive telescopes. 

 

In addition to the above problems, the use of 
laser reference stars meets an obstacle, namely, the 
problem of impossibility of full correction for the 
random wavefront tilts from a natural star based on 
measurements of tilts of a wavefront from a laser 
reference star. 

No doubts that the use of the laser reference 
stars, due to the light backscatter, is connected with 
the problem on selecting an optimal algorithm for 
making use of optical measurement data to correct for 
random jitter of a star image. It is just this problem 
we deal with in this paper. 

Let us consider the following scheme of the 
optical experiment: formation of the natural star 
image in the focal plane of a ground-based telescope 
takes place (F is the focal length of the optical 
system, Σ is the size of the optical system aperture). 
As was already noted, the star image jitter formed in 
the focal plane occurs due to the influence of 
atmospheric turbulence over the telescope. We define 
this image jitter as a random shift of the position of 
the center of gravity (provided that these 
fluctuations are small) of the star image intensity 
using the vector 

 

ρF

pl
 = – 

F
k S ⌡⌠ ⌡⌠ 

S 

 d2ρ∇ρ�S 

pl(0, ρ) , (1) 

 

where k is the radiation wave number; S 

pl(0, ρ) are 
the phase fluctuations in the plane wave from the 
star formed. 

In its turn, the measured random vector of the 
laser reference star image jitter, formed on the basis 
of the focused laser radiation, using a ground-based 
laser system, is given by the expression 
 

ρm= ρc + ρ F

sph
 , (2) 

 

where 
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ρc = 
1
P0

 ⌡⌠
0

x

 dξ(x – ξ) ⌡⌠ ⌡⌠ d2R I(ξ, R) ∇R n1(ξ, R) (3) 

 

is the position of the center of gravity, focused at a 
distance x from the source of the Gaussian laser 
beam; I(ξ, R) is the current value of the optical field 
intensity; ∇R n1(ξ, R) is the gradient of fluctuations 
of the atmospheric refractive index. We consider that 
the laser radiation is focused onto a sufficiently small 
spot, not resolved by a telescope through the 
atmosphere. The second term in (2) is of the form 
 

ρ F

sph
 = – 

F
k S ⌡⌠ ⌡⌠ 

S 

 d2ρ∇ρ�S 

sph
(ρ, 0)  (4) 

 

and represents the point source image jitter in the 
telescope focal plane. 

We construct the correction algorithm of a star 

image jitter5,6 ρF

pl
 in the form: 

 

ρF

pl
 – ρk , (5) 

 

where ρk = Aρm, and the coefficient A is chosen to 
provide the minimal variance of the residual 
distortions 
 

<(ρF

pl
 – A ρm)2>min = <e2> . (6) 

 

Having found the minimum for variance in the form 
of Eq. (6), we obtain 
 

<e2>min = <(ρF

pl
)
2
> – 

< rF

pl

 rm>
2

<(rm)2>  , (7) 

 

where the correcting coefficient A is expressed only 
in terms of the determinant functions as 
 

A = < ρF

pl
 ρm>/<(ρm)2> . (8) 

 

It should be noted that the traditional correction 
algorithm in the form of Eq. (5), where A ≡ 1, does 
not provide minimum (6) to the variance and 
therefore cannot be considered as any serious 
alternative. 

In a real experiment we have only the 

measurement data ρm, since the vector ρF

pl
, 

characterizing the real star jitter, whose image should 
be corrected, cannot be measured, since the real star 
emits only little light for the measurements with the 
wavefront sensor to be feasible. 

At the same time, the coefficient A can be 
calculated using a model description of the altitude 

behavior of the turbulence intensity Cn

2
(ξ). Taking 

into account Eqs. (2) and (8), the variance and 
correlation, as components of Eq. (7) can be written 
in the form 
 

<(ρm)2> = <(ρc)
2> + <(ρ F

sph
)
2
> + 2 < ρ F

sph
 ρc >, (9) 

 

< ρF

pl
 ρm> = < ρF

pl
 ρc > + < ρF

pl
 ρ F

sph
 > . (10) 

 

Now the question arises on how can the 
algorithm (5) be useful for correction? First of all, 

based on the knowledge of a model of the altitude 
turbulence profile one can: 

1) estimate the limiting level of correction of the 

general wavefront tilt, ρF

pl
, by the following 

expression: 
 

<β2>min = <(ϕF

pl
)
2
> 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

1 – 
<jF

pl

 jm >
2

<(jF

pl
)
2
> <(jm)>

2  , 

 

where the second term is estimated using the models 
of turbulent atmosphere. 

2) calculate the scaling factor A of measured 
values of ρm in the control algorithm, expressed in 
terms of the average values 

 

A = < ϕF

pl
 ϕm>/< ϕm

2
> . 

 

There are several schemes of laser reference star 
formation. From the viewpoint of calculation of 
variance and correlation from Eqs. (9) and (10) only 
two schemes can be mentioned as limiting ones, 
namely the monostatic and bistatic schemes. In the 
monostatic scheme the star image formation in the 
telescope and the formation of the laser reference star 
image take place through one and the same 
atmospheric inhomogeneities. In the bistatic scheme 
the reference star is formed in the region isoplanar 
with the image of a natural star, but the propagation 
of a focused laser beam itself, forming the reference 
star, occurs through turbulent inhomogeneities, 
uncorrelated with those on the way from the natural 
star. 

 

MONOSTATIC SCHEME 
 

Thus, for the monostatic scheme the correction 
coefficient A = AM in Eq. (8) and its components are 
calculated by formulas (9) and (10), respectively. 
Using normalization and changing the characteristics 
for angular ones we obtain 

 

< ϕm

2
> = 

<rm

2
> 

x2  = (27/6 π2 0.033 Γ(1/6)) × 
 

× [R 0
–1/3

 + a 0
–1/3

 – 27/6 (R 0
2
 + a 0

2
)
–1/6] × 

× ⌡⌠
0

x

 dξ(1 – ξ/x)5/3 Cn

2
(ξ) , (11) 

 

provided that the focused (x = f) laser beam is 

sufficiently wide ((ka0
2
)/x >> 1) and the turbulent 

laser beam broadening does not exceed focusing (i.e., 
Ω–2(1/2 DS(2a0))

6/5 << 1); 
 

< ϕF

pl
 ϕc> = (– 24/3 π2 0.033 Γ(1/6)) × 

× ⌡⌠
0

x

 dξ Cn

2
(ξ)(1 – ξ/x)[(R 0

2
 + a 0

2
(1 – ξ/x)

2
]
–1/6

. (12) 

 

When making these calculations we consider the 
radiation from a natural star as an infinite plane 
wave, propagating from zenith, and a laser beam is 
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formed coaxially with the main telescope, forming 
the image, then 
 

< ϕF

pl
 ϕ F

sph
> = (24/3 π2 0.033 Γ(1/6)) R 0

–1/3
 × 

 

× ⌡⌠
0

x

 dξ Cn

2
(ξ)(1 – ξ/x)[1 + (1 – ξ/x)2]–1/6 . (13) 

 

The latter expression represents the correlation 
between the plane wave image jitter and the point 
source image jitter (measured in the telescope focal 
plane), with the source being at a distance x from the 
telescope. 

The variance of the star image jitter is calculated 
by the following formula: 

 

<(ϕF

pl
)
2
> = (27/6

 π2
 0.033 Γ(1/6))R 0

–1/3
 ⌡⌠

0

∞

 dξ Cn

2
(ξ) .  

(14) 
Since the star is far out of the atmosphere, the 

upper integration limit in Eq. (14) tends to ∞. Using 
these designations the minimal variance of residual 
fluctuations of angular shifts of the star image for a 
monostatic scheme is given in the form 

 

<e2>min 
F2  = <β2>min = 

 

= <(ϕF

pl
)
2
> 

⎩
⎨
⎧

⎭
⎬
⎫

1 – 
21/3

 fM(x, Cn

2
)

[1 + b–1/3
 – 27/6(1 + b2)–1/6]  , (15) 

 

where b = a0/R0, 
 

fM(x, Cn

2
) = 

 

= 

⎩
⎨
⎧

⎭
⎬
⎫

⌡⌠
0

x

 dx Cn

2
(x)([1 + b2(1 – 

x
x)

2

]
–1/6

– [1 + (1 – 
x
x)]

–1/6

)
2

⌡⌠
0

x

 dx Cn

2
(x)(1 – 

 x
x)

5/3

 ⌡⌠
0

∞

 dx Cn

2
(x)

 . 

  (16) 
From Eqs. (11), (15), and (16) it is clear that b = 1 
(a0 = R0) the signal ϕm becomes noninformative 

because <ϕm

2
(R0 = a0)> ≡ 0. At the same time, the 

function fM(x, Cn

2
) vanishes. Therefore, for the 

monostatic scheme of the laser reference star formation, 
from the standpoint of information content of ϕm as 
well as from the power standpoint, the domain of 
admissible values of b = a0/R0 is the interval (0, 1), 
i.e., b < 1. For very small values of the parameter b 
the estimate of minimal value of the variance of the 
residual star image jitter is expressed as 

<β2>min=<(ϕF

pl
)
2
>

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

1– 
21/3

 
f̂M(x, Cn

2
)

[1+b–1/3– 27/6(1 + b2)–1/6]  , (17) 

where the function 

f̂M(x, Cn

2
) = 

 

= 
⎩
⎨
⎧

⎭
⎬
⎫

⌡⌠
0

x

 dx Cn

2
(x)(1 – x/x)(1 – [1 + (1 – x/x)2]–1/6)

2

⌡⌠
0

x

 dx Cn

2
(x)(1 – x/x)5/3 ⌡⌠

0

∞

 dx Cn

2
(x)

  

(18) 

is the limit for the function fM(x, Cn

2
) from Eq. (16) 

at the parameter b → 0. 
Table I gives the calculated values of all the 

parameter of a monostatic scheme interesting for us. 
The calculations have been done for different values of 
the parameter b (b = 0; 0.75; 0.80; 0.85; 0.90; 0.95) 

with the use of the model of Cn

2
(ξ) from Ref. 7 for the 

mean conditions of vision through the turbulent 
atmosphere and the altitudes of location of a reference 
source x from 5 to 100 km. Table I shows that the 

value of the function f̂M(x, Cn

2
) varies from 6.48 to 

11.2. In the same table the values of the quantity 

Am = < ρF

pl
 ρm>/<(ρm)2> , 

are given, calculated by the formula (8) for the 
monostatic scheme of the laser reference star formation. 
Thus, for the parameter b = 0.95 the values of Am vary 

from –15 to –16.1. Here the value of CM = <β2>/<(ϕF

pl

)
2
> is given, characterizing the ratio of the value of 

variance of residual fluctuations to the value of 
variance of the natural star jitter signal. The 
calculational data show that the values of CM vary 
from 0.9197 to 0.87. These results clearly demonstrate 

that because of small value of fM(x, Cn

2
) and owing to 

the fact that CM only slightly differs from 1, no 
efficient correction of random tilts with the use of the 
monostatic scheme of the laser reference star formation 
can be expected. It should be noted that this result has 
been obtained for the case of optimal correction, 
therefore the use of “direct’ correction algorithm and 
the optical measurement data (at A ≡ 1) the correction 
(6) is much less effective. 

Owing to the fact that fM(x, Cn

2
) is small, the 

optimal value of the ratio b, minimizing the 
variance <β2>min, given by Eq. (17), turns out to be 
comparable with the dimension of the telescope 
aperture R0. It is known that in this case (when 
a0 → R0) the measured signal ϕm decreases, and its 

variance < ϕm

2
> vanishes. Therefore, a compromise 

should exist in the choice of such a ratio 
b = a0/R0, which, on the one hand, minimizes the 
variance (17), and, on the other hand, provides the 
measurement a measurable signal ϕm, i.e., ensures a 
reasonable level of the variance (11). For example, 
one can select the value b = a0/R0, such that 

 
1 + b–1/3 – 27/6 (1 + b2)–1/6 ≤ 0.01 , 

 
i.e., the signal of the reference star jitter proved to be 
ten times smaller than real star jitter (although this  
 
 



 

TABLE I. 

 

x, fM ⋅103 AM CM 

km 0 0.75 0.80 0.85 0.90 0.95 0.75 0.80 0.85 0.90 0.95 0.75 0.80 0.85 0.90 0.95 

  5 6.48 0.8096 0.522 0.295 0.1314 0.03286 $2.4 $3.22 $4.59 $7.33 $15.6 0.9387 0.934 0.9292 0.9245 0.9197

 10 7.82 0.9644 0.6211 0.3506 0.156 0.03896 $2.42 $3.24 $4.62 $7.38 $15.7 0.927 0.9214 0.9159 0.9103 0.9048

 15 8.58 1.05 0.6784 0.3828 0.1703 0.04251 $2.43 $3.26 $4.64 $7.41 $15.7 0.9202 0.9142 0.9082 0.9022 0.8961

 20 9.14 1.12 0.7199 0.406 0.1805 0.04505 $2.44 $3.28 $4.67 $7.45 $15.8 0.9153 0.9089 0.9026 0.8963 0.8899

 85 11.1 1.32 0.8494 0.4779 0.212 0.05277 $2.5 $3.35 $4.77 $7.61 $16.1 0.8998 0.8926 0.8853 0.8782 0.8711

 90 11.1 1.33 0.8522 0.4795 0.2126 0.05293 $2.5 $3.35 $4.77 $7.61 $16.1 0.8995 0.8922 0.885 0.8778 0.8707

 95 11.2 1.33 0.8548 0.4809 0.2133 0.05308 $2.51 $3.35 $4.77 $7.61 $16.1 0.8992 0.8919 0.8846 0.8774 0.8703

100 11.2 1.34 0.8572 0.4822 0.2138 0.05322 $2.51 $3.35 $4.77 $7.61 $16.1 0.8989 0.8916 0.8843 0.8771 0.87 

 

 

TABLE II. 

 

x,  Ab Cb 

km fb 0.1 0.5 1.0 3.0 0.1 0.5 1.0 3.0 

  5 0.6284 0.3524 0.4918 0.5557 0.6564 0.749   0.6497 0.6041 0.5324 

 10 0.7127 0.3465 0.4837 0.5465 0.6455 0.7153 0.6027 0.551  0.4697 

 15 0.7523 0.3424 0.4779 0.54 0.6378 0.6995 0.5806 0.5261 0.4403 

 20 0.77     0.3383 0.4722 0.5335 0.6301 0.6925 0.5707 0.5149 0.4271 

 85 0.7919 0.3231 0.451 0.5096 0.6018 0.6837 0.5585 0.5011 0.4108 

 90 0.7922 0.3228 0.4505 0.5091 0.6012 0.6836 0.5583 0.5009 0.4106 

 95 0.7926 0.3225 0.4501 0.5086 0.6007 0.6834 0.5581 0.5007 0.4103 

100 0.7929 0.3222 0.4497 0.5082 0.6002 0.6833 0.558 0.5005 0.4101 
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opinion is too optimistic), then the optimal ratio b 
should be equal  to bopt ≥ 0.86. However, it is known 
that it is very difficult to perform accurate 
measurements of small signals under conditions of 
noise and background fluctuations. This shows once 
more that the correction of wavefront tilts in the 
monostatic scheme is ineffective since any effective 
correction should be expected for the parameter value 
b → 1, i.e., for the case when the measured value 
itself becomes small and, hence, it is measured with 
larger error. 
 

BISTATIC SCHEME 
 

According to the bistatic scheme the laser star 
formation is performed through the turbulent 
inhomogeneities uncorrelated with those 
inhomogeneities, through which the natural star 
image is formed with the telescope. This can be done 
using lateral irradiation (at a sufficiently large 
spacing between the optical axes of the laser beam 
propagation and the telescope). Using the same 
procedure of search for minimum of variance of 
residual fluctuations of image jitter, we obtain for 
the residual level of fluctuations from Eq. (7), 
respectively, 
 

<β2>min = <(ϕF

pl
)
2
> – 

<jF

pl

 j F

sph
>

2

<(jb)
2
>

 , (19) 

 

where 
 

<(ϕb)
2
> = < ϕc

2
> + <(ϕ F

sph
)
2
> . (20) 

 
Having made the same calculations as for the 

monostatic scheme, we obtain the following 
expressions for the correcting coefficient A = Ab and 
for the residual level of corrected variance (7), where 

 

Ab = 
<jF

pl

 j F

sph
>

<jc
2
> + <(j F

sph
)
2
>

 = 

 

= 

21/6 ⌡⌠
0

x

 dx Cn

2
(x)(1 – x/x)[1 + (1 – x/x)2]–1/6

(1 + b–1/3) ⌡⌠
0

x

 dx Cn

2
(x)(1 – x/x)5/3

 , (21) 

 

<e2>min
 

F2  = <β2>min = <(ϕF

pl
)
2
> 
⎩
⎨
⎧

⎭
⎬
⎫

1 – 
21/3

 fb(x, Cn

2
)

(1 + b–1/3)  , (22) 

 

fb(x, Cn

2
) = 

 

= 
⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
0

x

 dx Cn

2
(x)(1 – x/x)[1 + (1 – x/x)2]–1/6  

2

⌡⌠
0

x

 dx Cn

2
(x)(1 – x/x)5/3 ⌡⌠

0

x

 dx Cn

2
(x)

 . (23) 

 

As the analysis of the latter expressions has 
shown, the effective correction with the bistatic 
scheme of the reference star formation ensures the 
minimum variance of residual image jitter (22) with 
the correction in the form 

 

ϕF

pl
 – Ab ϕb , 

 

where ϕb is the signal of the reference bistatic star 
image jitter, Ab is given by formula (21). It is clear 
that in contrast to the monostatic scheme the 
correction within the bistatic scheme is possible at 
any ratio b = a0/R0, it is evident that the correction 
is the better the larger is the value b (see (22). If 
b = 1, from Eq. (22) we find that 
 

<β2>min = <(ϕF

pl
)
2
> {1 – 2–2/3 fb(x, Cn

2
)} . 

 

The functions fb(x, Cn

2
), Ab, Cb = 1 – 

21/3
 fb(x, Cn

2
)

1 + b–1/3  

are represented in Table II for the model of the 
turbulent atmosphere7 at different altitudes of the 
reference source formation x ∈ [1, 100] km, and for 
the values of the parameter b = a0/R0, 0.1; 0.5; 1.0; 

3.0, respectively. The values of the function fb(x, Cn

2
) 

vary from 0.628 to 0.7930. Therefore a more effective 
correction should be expected from the bistatic 
scheme as compared with the monostatic one. 
Besides, in the bistatic scheme we do not face the 
situation when the measured signal or its variance 
<(ρb)

2> vanishes. Of course, the bistatic scheme has a 
limiting correction level, and the variance of residual 
distortions (for example, for b = 1) as a result of 
such correction proved to be equal to 
 

<β2>min ≈ <(ϕF

pl
)
2
> {1 – 2–2/3 fb(x, Cn

2
)} . 

 

The two limiting schemes of laser reference star 
formation can be compared only by means of concrete 
estimates. It should be noted that it is necessary to 
make the estimation not for a separate telescope 
(with adaptive optics) but for the whole observatory, 
for example, the Mauna Kiya observatory on 
Hawaian Islands, where the three largest telescopes 
(Keck I, Keck II, and CHFT) are located, operating 
with the adaptive correction of turbulent distortions. 
The first two telescopes are with the 10 m aperture, 
and the CHFT telescope (Canada, Hawaian Islands, 
France) has the 3.6 m aperture. 

Thus, when investigating, with the use of the 
monostatic scheme, equals the variance of residual 
distortions for every telescope 

 

<β2>min = <(ϕF

pl
)
2
> 
⎩
⎨
⎧

⎭
⎬
⎫

1 – 
21/3

 fM(x, Cn

2
)

[1 + b–1/3
 – 27/6

 (1 + b2)–1/6  . 

 

If the Keck I telescope produces the bistatic star 
for the Keck II telescope (the distance between the 
telescopes is 85 m), then we have 

 

<β2>min = <(ϕF

pl
)
2
> {1 – 2–2/3 fb(x, Cn

2
)}, 
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if the Keck I telescope produces the star for the 
CHFT telescope, then 

<β2>min = <(ϕF

pl
)
2
> 
⎩
⎨
⎧

⎭
⎬
⎫

1 – 
21/3

 fb(x, Cn

2
)

1 + (10/3.6)–1/3  . 

If CHFT produces the star for the pair of Keck I 
and Keck II telescopes, then 

<β2>min = <(ϕF

pl
)
2
> 
⎩
⎨
⎧

⎭
⎬
⎫

1 – 
21/3

 fb(x, Cn

2
)

1 + (3.6/10)–1/3  . 

Before making the final conclusions we consider 
the so-called intermediate scheme of the laser 
reference star formation. 
 

INTERMEDIATE SCHEME OF THE LASER 

REFERENCE STAR FORMATION 
 
Let us consider the bistatic scheme of laser 

reference star formation in detail as is stated below. 
Let we have got two telescopes whose axes are spaced 
by the distance (vector) ρ0. For simplicity we 
consider that one of these telescopes is focused to 
zenith and forms a natural star image, and the second 
telescope, forming the laser reference star, is inclined 
at an elevation angle θ relative to the first telescope 
so that the elevation angle equals numerically 
θ = π/2 – ρ0/x, where x is the altitude at which the 
laser reference star is formed. 

Let us first consider cross-correlations of random 
shifts of the center of gravity ρc(ρ0) of the laser beam 
formed with the second telescope whose directional 
pattern axis is shifted by the vector ρ0 and is inclined 
at an angle θ = π/2 – ρ0/x to the horizon, as well as 
the shifts of the center of gravity of the plane wave 

image ρF

pl
 and the spherical wave image ρ F

sph
 formed 

by the first telescope , i.e., the correlations 

<ρF

pl
 ρc(ρ0)> ,   <ρ F

sph
 ρc(ρ0)> . 

It is important to understand that the first 

correlation, < ρF

pl
 ρc (ρ0)> for the plane wave, 

decreases faster with the increase of the value of 
spacing between the telescope optical axes ρ0 than 

the second one, < ρ F

sph
 ρc (ρ0)>, for the spherical 

wave. We try to prove this on the basis of analytical 
and numerical calculations. Let us write the 
expression for the vector of energy center of gravity 
of a laser beam, formed with the second telescope 
from the ground surface, in the form 

ρc(ρ0) = 

1
P0

 ⌡⌠
0

x

 dξ(x – ξ) ⌡⌠ ⌡⌠ d2R <I(ξ, R)> ∇R n1(ξ, R),  

(24) 
where 

∇R n1(ξ, R) = i ⌡⌠ ⌡⌠  d2n(ξ, κ)κ exp(i κ�R) ,  (25) 

and the mean intensity distribution of a laser beam, 
shifted to the vector ρ0 and tilted at an angle θ to the 
Earth (θ = π/2 – ρ0/x), is given by the expression 
 

<I(ξ, R)> = 
a0

2

 

a eff
2

(x)
 exp {– (R – ρ0(1 – ξ/x))2/a eff

2
(ξ)} . 

 (26) 
Having made the calculations, we obtain 

ρc(ρ0) = i ⌡⌠
0

x

 dξ(x – ξ) ⌡⌠ ⌡⌠ d2n(ξ, κ)κ × 

× exp{–κ2 a eff
2

(ξ)/4} exp[iκρ0(1 – ξ/x)].  (27) 

As a result we have the following expressions for the 

variance ρc(ρ0) and cross-correlations < ρF

pl
 ρc (ρ0)>, 

< ρ F

sph
 ρc (ρ0)>: 

<(ϕc(ρ0))
2> = 

<(rc(r0))
2> 

x2  = 

= (2π2 0.033 Γ(1/6)) 21/6 (R 0
2
 + a 0

2
)–1/6 × 

× 1F1⎝
⎜
⎛

⎠
⎟
⎞

1/6; 1; – 
r0
2

 

R0
2
 + a0

2  ⌡⌠
0

x

 dξ Cn

2
(ξ)(1 – ξ/x)5/3

 , (28) 

<ϕc(ρ0) ϕ F

sph
> = 

<rc(r0) r F

sph
>

x F  = 

= (– 2π2 0.033 Γ(1/6)) 21/3 (R 0
2
 + a 0

2
)–1/6 × 

× 1F1⎝
⎜
⎛

⎠
⎟
⎞

1/6; 1; – 
r0
2

 

R0
2
 + a0

2  ⌡⌠
0

x

 dξ Cn

2
(ξ)(1 – ξ/x)5/3

 , (29) 

<ϕc(ρ0) ϕF

pl
> = 

<rc(r0) 
rF

pl
>

x F  = 

= [– 2π2
 0.033 Γ(1/6)] 21/3 ⌡⌠

0

x

 dξ Cn

2
(ξ)(1 – ξ/x) × 

× {R 0
2
 + a 0

2
(1 – ξ/x)2}–1/6 × 

× 1F1⎝
⎜
⎛

⎠
⎟
⎞

1/6; 1; – 
r0
2
(1 – x/x)2

(R0
2
 + a0

2
(1 – x/x)2)

 .  (30) 

Having analyzed the latter expressions we can state 
that the correlation between the slant beam and a 
spherical wave decreases slower than the correlation 
between this beam and a plane wave. 

All the values calculated for this intermediate 
case are marked by the subscript “i”. Besides, 
together with the parameter b = a0/R0 the parameter 
d = ρ0/R0 is introduced, characterizing the spacing 
between the laser beam axis, forming the star and the 
axis of the main telescope. In the general case (for 
arbitrary values of the parameters b = a0/R0 and 
d = ρ0/R0) we have, using Eqs. (28), (29), and (30) 
for a correcting factor A = Ai and the values Ci, 
<β2>i, characterizing the variance of residual 
distortions, the following expressions: 

Ai = 21/6

⎣
⎢
⎡ 

 
⌡⌠
0

x

 dx Cn

2
(x)(1 – x/x)

⎩
⎨
⎧ 

 
(1 + (1 – ξ/x)2)–1/6

 – 

– (1 + b2(1 – ξ/x)2)–1/6 × 
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× 1F1⎝
⎜
⎛

⎠
⎟
⎞

1/6; 1; – 
r0
2
(1 – x/x)2

(1 + b2(1 – x/x)2)
⎦
⎥
⎤

⎭
⎬
⎫ 

 
 × 

×
⎝
⎜
⎛ 

 
⎣
⎡1 + b–1/3 – 2–7/6 (1

 
+
 
b2)–1/6 × 

× ⎦
⎤

1F1⎝
⎛

⎠
⎞1/6; 1; – 

d2

(1 + b)2   ⌡⌠
0

x

 dξ Cn

2
(ξ)(1 – ξ/x)5/3

⎠
⎟
⎞ 

 
 

–1

, 

<β2>i = <(ϕF

pl
)
2
> Ci , 

Ci = 1 – 21/3

⎣
⎢
⎡ 

 
⌡⌠
0

x

 dx Cn

2
(x)(1 – x/x) × 

×
⎩
⎨
⎧ 

 
(1 + (1 – ξ/x)2)–1/6

 – (1 + b2(1 – ξ/x)2)–1/6 × 

×1F1⎝
⎜
⎛

⎠
⎟
⎞

1/6; 1; – 
r0
2
(1 – x/x)2

(1 + b2(1 – x/x)2)
⎦
⎥
⎤

⎭
⎬
⎫ 

 
 × 

×
⎝
⎜
⎛ 

 
⎣
⎡1 

+
 
b–1/3 – 2–7/6 (1 + b2)–1/6 × 

× ⎦
⎤

1F1⎝
⎛

⎠
⎞1/6; 1; – 

d2

(1 + b)2   × 

× ⌡⌠
0

x

 dξ Cn

2
(ξ)(1 – ξ/x)5/3

  ⌡⌠
0

∞

 dξ Cn

2
(ξ)

⎠
⎟
⎞ 

 
 

–1

. 

It can easily be seen that at d → 0 we obtain the 
expressions for the monostatic scheme, and at d → ∞ 
we obtain the expressions for a bistatic scheme. For an 
arbitrary parameter d = ρ0/R0 the values of Ai, Ci, 
<β2>i exist even at b = 1 (a0 = R0) in contrast to the 
monostatic scheme. At b = 1 we obtain 

 

 

<β2>i =<(ϕF

pl
)
2
>

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

1 – 2–2/3
 

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
0

x

 dx Cn

2

⎝
⎛

⎠
⎞1 – 

x
x  ⎝

⎛
⎠
⎞

⎣
⎡

⎦
⎤1 + ⎝

⎛
⎠
⎞1 – 

x
x  

2 –1/6

 

⎣
⎢
⎡

⎦
⎥
⎤

1 – 1F1

⎝
⎜
⎛

⎠
⎟
⎞

1/6; 1; – 

d2

⎝
⎛

⎠
⎞1 – 

x
x  

2

⎝
⎛

⎠
⎞1 + b2

⎝
⎛

⎠
⎞1 – 

x
x

2  

2

⎣
⎡

⎦
⎤1 – 1F1⎝

⎛
⎠
⎞1/6; 1; 1 – 

d2

2  ⌡⌠
0

x

 dx Cn

2

⎝
⎛

⎠
⎞1 – 

x
x

5/3

 ⌡⌠
0

x

 dx Cn

2
(x)

. (31) 

 
Let us consider the asymptotic behavior of the expression for the correcting factor A = Ai and the values of 

Ci, <β
2>i at the parameter d → ∞. In this case we use the analytical continuation for a hypergeometric function 

1F1(1/6; 1; z) = 
(–z)–1/6

G(5/6)  ⎝
⎛

⎠
⎞1 + 

1
36(–z) + ...  . 

As a  result, the denominator in Ai equals 

⎣
⎡

⎦
⎤1 + b–1/3 – 

27/6 d–1/3

G(5/6)  ⌡⌠
0

x

 dξ Cn

2
(ξ) (1 – ξ/x)5/3

  

and the numerator equals 

1 – 1F1⎝
⎛

⎠
⎞1/6; 1; –d2 

(1 – x/x)2

1 + b2(1 – x/x)2  = 
(1 – x/x)–1/3

G(5/6)  (1 + (1 – ξ/x))1/6 . 

We obtain that 

<β
2
> = <(ϕF

pl
)
2
> Ci

 
= <(ϕF

pl
)
2
> 

⎩
⎨
⎧

⎭
⎬
⎫

1 – 
21/3

 
F2

⎣
⎡

⎦
⎤1 + b–1/3

 – 

27/6
 F2

G(5/6)  ⌡⌠
0

x

 dx Cn

2
(x)(1 – 

x
x)5/3

 ⌡⌠
0

x

 dx Cn

2
(x)

  (32) 

 
 

 

and the function 

F = ⌡⌠
0

x

 dξ Cn

2
(ξ) 

⎩
⎨
⎧

⎭
⎬
⎫(1 – x/x)2

[1 + (1 – x/x)2]–1/6 – 
(1 – x/x)2/3

G(5/6) d1/3  .  

(33) 
It turns out that the numerator of the function Ci 
(see Eq. (32)) at d → ∞ does not depend on the 

parameter b = a0/R0, whereas the denominator 
depends on b = a0/R0 as follows: 

⎣
⎡

⎦
⎤1 + b–1/3 – 

27/6 d–1/3

G(5/6)  ⌡⌠
0

x

 dξ Cn

2
(ξ) (1 – ξ/x)5/3

 . 

Thus, one can decrease the variance (32) of residual 
fluctuations of the random star position by increasing 
b = a0/R0. 
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Tables III and IV give the results of 
calculations of the functions Ai and Ci by formula 
(31) at b = 1, the altitude of beacon from 5 to 
100 km, the spacing between the first and second 
 

telescopes d = 23, 33, ..., 103. When comparing the 
data of these two tables with the column (at b = 1) 
from Table II one can see that the values of Ai and 
Ci approach the values of Ab and Cb when d → ∞. 

 

TABLE III. 
 

x, km d1/3 

1 2 3 4 5 6 7 8 9 10 

  5 0.5372 0.5465 0.5496 0.5511 0.552 0.5526 0.5531 0.5534 0.5537 
 10 0.5299 0.5382 0.541 0.5423 0.5432 0.5437 0.5441 0.5444 0.5447 
 15 0.5271 0.5335 0.5357 0.5368 0.5374 0.5378 0.5381 0.5384 0.5386 
 20 0.5237 0.5286 0.5302 0.5311 0.5316 0.5319 0.5321 0.5323 0.5324 
 85 0.5075 0.5085 0.5089 0.509 0.5092 0.5092 0.5093 0.5093 0.5093 
 90 0.5071 0.5081 0.5084 0.5086 0.5087 0.5087 0.5088 0.5088 0.5088 
 95 0.5067 0.5077 0.508 0.5081 0.5082 0.5083 0.5083 0.5084 0.5084 
100 0.5064 0.5073 0.5076 0.5077 0.5078 0.5079 0.5079 0.508 0.508 

 

TABLE IV. 
 

x, km d1/3 

1 2 3 4 5 6 7 8 9 10 

  5 0.814 0.7441 0.7091 0.6881 0.6741 0.6641 0.6566 0.6508 0.6461 
 10 0.7877 0.7089 0.6695 0.6458 0.63 0.6187 0.6102 0.6037 0.5984 
 15 0.7729 0.6907 0.6496 0.6249 0.6084 0.5966 0.5878 0.581 0.5755 
 20 0.765 0.6817 0.64 0.615 0.5983 0.5864 0.5775 0.5705 0.565 
 85 0.7512 0.6679 0.6262 0.6012 0.5845 0.5726 0.5637 0.5567 0.5512 
 90 0.751 0.6676 0.626 0.601 0.5843 0.5724 0.5634 0.5565 0.5509 
 95 0.7508 0.6674 0.6257 0.6007 0.5841 0.5722 0.5632 0.5563 0.5507 
100 0.7506 0.76672 0.6255 0.6005 0.5839 0.572 0.563 0.5561 0.5505 

 

 
As a practical outcome of the above 

considerations we can state that one can, based on 
the results obtained, quantitatively characterize the 
spacing between the optical axes of the main and 
star forming telescopes characteristic of the so-
called bistatic scheme. 

Thus, the following conclusions can be drawn: 
1. Monostatic scheme does not remove the 

wavefront tilts. 
2. Bistatic and intermediate schemes (at 

spacing between the axes of the two telescopes 
d > 40) are practically identical. 

3. Bistatic scheme, where the two telescopes 
are used for correction of random tilts is more 
efficient at larger values of the parameter b. 
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