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Additional terms of asymptotic expansions of the functions describing the scattered 
light in weakly media and the approximation relations for the reflective coefficient that 
essentially widen the applicability limits of asymptotics and simplify computations of 
these functions are obtained. Based on asymptotic formulas of the radiation transfer 
theory for the intensity of diffuse radiation at the boundaries of an optically thick 
scattering layer an expression for the parameter which describes actual absorption of 
light (s2 = (1 – Λ)/(3 – x

1
)) is derived. This relation, in combination with the formula 

for optical thickness of the layer, enables one to determine the volume scattering and 
absorption coefficients from measured intensity of radiation outgoing from the layer. The 
accuracy and applicability limits of the proposed formulas are investigated. 

 
INTRODUCTION 

 
Optical properties of cloud layers is a subject of interest 

in many problems of atmospheric physics, e.g., for 
construction of optimal models for climatic calculations and 
indication of possible pollutions of the atmosphere in 
ecological monitoring. Measurements of the scattered solar 
radiation field in the atmosphere and solution of the so–called 
"inverse problem" of the radiation transfer theory seem to be 
quite applicable to reconstruction of the optical parameters of 
cloud layers. Earlier such problems were solved using, in 
particular, the asymptotic formulas of the radiation transfer 
theory (see Refs. 1 and 2) by fitting the values of optical 
parameters of a cloud layer so that the best agreement 
between the radiation field characteristics calculated using 
asymptotic formulas (or other method) and those measured in 
the atmosphere was achieved. 

Further development of the method proposed by the 
author in Ref. 3 and based on derivation of analytical 
relations between the scattering and absorption coefficients 
and measurable characteristics of solar radiation in the visible 
spectral range is the subject of this study. In some 
experiments they measure not the radiation fluxes but the 
intensity of solar radiation2, therefore in this paper we shall 
propose relevant formulas relating the scattering and 
absorption coefficients of a cloud layer to the intensity of 
scattered radiation. To do this, we shall have a need for 
analytical expressions for the functions describing reflection of 
diffuse radiation from a semi–infinite medium. Such 
expressions are also being derived bellow. 

 

APPROXIMATION FORMULAS 
 

The radiation transfer equation is used for describing 
multiple scattering of light in a diffuse medium. In the case of 
an optically thick medium such as cloud layers the so–called 
depth or asymptotic regime is established and a solution of the 
radiation transfer equation is given by asymptotic formulas. 
The applicability limits of the asymptotic formulas of the 
radiation transfer theory has been studied elsewhere.4,5 The 
authors infer that the asymptotics errors do not exeed 3% 
when τ

0
 ≥ 7. Radiation reflected from a plane layer of a large 

optical depth τ
0
 is described with the reflection coefficient by 

the formula6 

ρ(ζ, η, τ
0
) = ρ(ζ, η) – 

MNu(ζ) u(η) e
–2κτ

0

1 – N2e
–2κτ

0
 , (1) 

 

where ζ and η are the cosines of the angles of incidence and 
reflection, the function u(ζ) describes the angular distribution 
of radiation intensity emanating from the medium, ρ(ζ, η) is 
the azimuth–independent term of the reflective coefficient of 
a semi–infinite atmosphere, the values M and N are defined 
by integral relations which involve the function u(ζ), and the 
value k is called the diffuse length. 

For a weak actual absorption of light in a medium 
(which is true, e.g., for clouds in the visible spectral region) 
the asymptotic values and functions can be represented by 
series expansions of small parameter powers characterizing the 
absorption. Different authors use different quantities to do 

this. In this paper we use the value s = 
 

(1 – Λ)/(3 – x
1
), 

where Λ is the probability of a photon survival at single 
scattering, x

1
 is the first coefficient in the series expansion of 

the scattering phase function over the Legendre polynomials. 
The scattering phase function is often described using the 

Henny–Greenstein formula x(γ) = 
1 – g

(1 + g2 – 2g cos γ)3/2 , 

where the parameter g determines the degree of the scattering 
phase function forward peakedness and coincides with the 
mean cosine of the scattering angle. In this case the relations 
g = cos γ, x1 = 3g, and x2 = 5g2 hold. 

In the series expansions of M, N, and k values the 
coefficients at terms are known for up to the third term 
that is quite sufficient for solving some applied problems 
of atmospheric optics (see, e.g., Ref. 7). As to the series 
expansions of functions ρ(ζ) and u(ζ), only the 
coefficient at the first power of parameter s has been 
obtained, and the first and second coefficients have been 

determined for the plane albedo α(ζ) = 2 ⌡⌠
0

1

 ρ(η, ζ) η dη. 

The series expansions of these functions have the form
6,7

 
 

a(ζ) = 1 – 4u
0
(ζ) s + a

2
(ζ) s2 + a

3
(ζ) s3 ; (2) 

 

u(ζ) = u
0
(ζ) (1 – 3/2δs) + u

2
(ζ) s2 ;  (3) 
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ρ(ζ, η)= ρ
0
(ζ, η) – 4u

0
(ζ) u

0
(η) s + ρ

2
(ζ, η) s2 + ρ

3
(ζ, η) s3, (4) 

 
where u

0
(ζ) is the value of the function u(ζ) for a purely 

scattering Λ = 1 and δ = 4 ⌡⌠
0

1

 u
0
(ζ) ζ2 dζ = 1.427. The relation 

for the expansion coefficient a
2
(ζ) has been derived in Ref. 8 

 

a
2
(ζ) = 

⎣
⎡

⎦
⎤6δu

0
(ζ) + 

15(3 – x
1
)

5 – x
2

 υ
0
(ζ)   and 

 

υ
0
(ζ) = ζ2 –2 ⌡⌠

0

1

ρ
0
(ζ, η) η3 dη , ε = 6 ⌡⌠

0

1

u
0
(ζ) ζ3 dζ = 1.667

. (5) 
 
Let us also represent here an expression for the spherical 

albedo of a semi–infinite atmosphere a∞ = 2 ⌡⌠
0

1

 a(ζ) ζ dζ from 

Ref. 9 and for the value Q = 2 ⌡⌠
0

1

 u(ζ) ζ dζ 

 

Q = 1 – 3/2δs + 
⎣
⎡

⎦
⎤9/4δ2 – 

(5ε – x
2
) (3 – x

1
)

(5 – x
2
)  s2 ; (6) 

 

a∞ = 1 – 4s + 6δs2 – 

 

– 3 
⎣
⎡

⎦
⎤2 (2 – x

1
) + 3δ2 + 

4(3 – x
1
)

3(5 – x
2
) (11 + x

2
 – 10ε)  s3 

 
where x

2
 is the second coefficient in the series expansion 

of the scattering phase function, x
2
 = 5 g2. As is shown 

in Ref. 3 based on the analysis of numerical values of the 
functions u

0
(ζ) and υ

0
(ζ) listed in the tables,9 the ratio 

u
0
(ζ)/υ

0
(ζ) is well approximated by the formula 

υ
0
(ζ)/u

0
(ζ) = u

0
(1) ζ – 0.9, with the deviations from 

this representation being less than fractions of a per cent. 
Then the expression for the expansion coefficient a

2
(ζ) 

takes the form 
 

a
2
(ζ) = 3u

0
(ζ) 

⎣
⎡

⎦
⎤ 

5(3 – x
1
)

5 – x
2

 (u
0
(1)•ζ – 0.9) + 2δ  . (7) 

 

The integration of this equation over ζ yields the value 

which differs only by 0.4% from a
2
∞ = 6 δ. 

Let us now consider the function u
2
(ζ) which is the 

second coefficient in series expansion (3) 
 

u
2
(ζ) = u(ζ) – u

0
(ζ) (1 – 3/2δ) – 0(s3) . 

 

Using the values of the function u(ζ) obtained in Ref. 9, and 
examining numerically the difference, while neglecting the 
term ∼ s3 one can see that the function u

2
 is well described by 

a quadratic function u
2
(ζ) = Q

2 
ε(ζ2 + 0.1). Taking into 

account that Q
2
 = 2 ⌡⌠

0

1

 u
2
(ζ) ζ dζ it is easy to check that the 

proposed representation of the function u
2
(ζ) provides an 

approximate equality Q
2
 = Q

2
⋅1.0002. A numerical 

verification of the approximation for the function u
2
(ζ) by  

comparing it with the tabulated values7 shows that the error 
does not exceed 1% up to the values Λ = 0.990 (Table I). 
 

TABLE I. Errors in calculating the functions u(ζ). 
 

Λ 0.999 0.995 0.990 
g 0.5 0.9 0.5 0.9 0.5 0.9 

ζ/s 0.0258 0.05774 0.05774 0.12910 0.08165 0.18257
0.1 0.1 0.2 0.4 1.0 0.5 2.0 
0.5 0.1 0.4 0.1 2.0 0.1 4.0 
0.7 0.03 0.5 0.3 0.8 0.4 3.0 
1.0 0.2 0.6 0.6 2.0 1.0 4.0 

 
Moreover, taking into account the relation between 

the functions u
2
(ζ) and a

3
(ζ), pointed out in Ref. 7, where 

a
3
(ζ) is the coefficient at s3 in series expansion (2) of the 

plane albedo it is possible to find an analytical 
representation for the function a

3
(ζ) 

 

a
3
(ζ) = 4 

⎩
⎨
⎧

⎭
⎬
⎫

 u
0
(ζ) 

⎣
⎡

⎦
⎤ 

(5ε – 11) (3 – x
1
)

(5 – x
2
)  – εQ

2
(ζ2 + 0.1)  . (8) 

 

It is of practical interest for the problems on calculating the 
intensity of reflected radiation to improve the accuracy of 
asymptotic series expansion (4) of the function ρ(η, ζ) of the 
reflective coefficient of a semi–infinite layer. To do this, it is 
necessary to derive the additional terms of the series 
expansion. We assume, by analogy with the expression for 
ρ
1
(η, ζ), that the function ρ

2
(η, ζ) can be represented as 

ρ
2
(η, ζ) = f(η)⋅f(ζ), where f(ζ) is an arbitrary function. Then 

taking into account that 2 ⌡⌠
0

1

 ρ
2
(η, ζ) η dη = a

2
(ζ) as well as 

the second coefficient in series expansion (6) for the 

spherical albedo a
2
 = 2⌡⌠

0

1

 a
2
(ζ) ζ dζ = 6δ it is possible to 

write the following expressions for the function f(ζ): 
 

2 ⌡⌠
0

1

η dη 2 ⌡⌠
0

1

f(η) f(ζ) ζ dζ = 

⎣
⎢
⎡

⎦
⎥
⎤

2 ⌡⌠
0

1

 f(ζ) ζ dζ

2

 = 6 δ; (9) 

 

2 f(ζ) ⌡⌠
0

1

f(η) η dη = a
2
(ζ) , 

 

from where f(ζ) = a
2
(ζ)/ 6 δ, and for the function ρ(η, ζ) 

we have  
 

ρ
2
(η, ζ) = 

a
2
(η) a

2
(ζ)

6δ
 . (10) 

 

From analogous consideration of the third coefficient of series 
expansion (4) one can notice that the following relation 

 

ρ
3
(η, ζ) = 

a
3
(η) a

3
(ζ)

a
3
∞  (11) 

 

is also valid. The expressions for a
3
(ζ) and a

3
∞ have been given 

above. The values of the coefficients ρ
2
(η, ζ) and ρ

3
(η, ζ) for 

η = ζ = 1 are on the average ρ
2
 ∼ 20 and ρ

3
 ∼ 80, the values s2  

and s3 are determined by the actual light absorption and by 
the scattering phase function, for instance, the values 
s2 ∼ 0.03, s3 ∼ 0.006, and ρ

0
(η, ζ) ∼ 1 are characteristic of the  
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earth's clouds, therefore the second and third terms of series 
expansion (4) amount 10 – 50% of the value ρ(η, ζ) and an 
account of these values significantly improves the accuracy of 
calculating the coefficient of reflection from a semi–infinite 
layer. The errors in calculating the function ρ(ζ, ζ) based on 
asymptotic series expansion (4) with an account of 
formulas (10) and (11) are less than 1% for Λ ≥ 0.990 and 
g ≤ 0.85 (Table II). 
 
TABLE II. Errors in calculating the function ρ(ζ, ζ) 
based on asymptotic series expansion (4) with an account 
of formulas (10) and (11). 
 

Λ 0.999 0.995 0.990 
g 0.5 0.9 0.5 0.9 0.5 0.9 

ζ/s 0.0258 0.05774 0.05774 0.12910 0.08165 0.18257
0.1 0.2 0.6 0.2 1.0 0.3 2.6 
0.5 0.2 0.3 0.4 1.0 1.0 3.0 
1.0 0.1 0.3 0.5 1.0 0.7 3.0 

 
Let us now consider the reflection coefficient of a 

conservative scattering (Λ = 1) ρ
0
(η, ζ). As is well known7 

the azimuth–independent part of the reflective coefficient is 
represented by a linear combination of the Ambartsumyan 
functions, e.g., for an isotropic scattering (x

1
 = 0 or g = 0) 

 

ρ
0
(η, ζ, g = 0) = 1/4 

ϕ
0
(η) ϕ

0
(ζ)

η + ζ
 . (12) 

 
The Ambartsumyan function ϕ

0
(η) at an arbitrary 

value of a photon survival probability Λ is described by a 
complicated formula.7 A brief table of values of the 
function ϕ

0
(η) and its moments can also be found in Ref. 7. 

Numerical analysis of the function ϕ
0
(η) made in spite of 

its cumbersome analytical representation reveals the fact 
that the Ambartsumyan function can be approximated by a 
linear function with the error of approximation not 
exceeding 0.25% 

 
ϕ

0
(η) = 1.81 η + 1.10, η ≥ 0.15 , 

ϕ
0
(η) = 2.25 η + 1.0, η < 0.15 . (13) 

 
In the below discussion we shall meet again a 

limitation on the η value but the matter is that at small 
angles of incidence and reflection more complicated 
methods are to be used since the model of a plane layer is 
not applicable, and one has to take into account the 
refraction etc. When the above formulas are applied to the 
models of a plane atmosphere the limitation η ≥ 0.2 
actually does not impose any restriction. Thus in the case of 
a conservative isotropic scattering the relation 

 

ρ
0
(η, ζ) = 

0.810ηζ + 0.308
η + ζ

 + 0.5 (14) 

 
is valid for the function ϕ

0
(η). Inaccuracy of this 

approximation by Eq. (14) is about 0.4%. 
In the case of anisotropic light scattering the 

analytical view of the function ρ
0
(η, ζ)) is more 

cumbersome but the author has succeeded in deriving an 
analytical representation which well approximates the 
reflective coefficient. 

Given below are the principal stages of the analysis of 
the problem for anisotropic scattering. We use here the 
tables of the function ρ(ζ, ζ) values which have been 
obtained using rigorous numerical calculations9 for a wide 
set of parameters of the Henny–Greenstein scattering phase 
function g and the single scattering albedo. The result  

presented in Ref. 9 for a two–term scattering phase 
function and the analysis of the numerical values show that 
the function ρ(ζ, ζ) linearly depends on g = 0.5–0.9 (such 
values are characteristic of different cloud forms of the 
Earth and Venus). It should be noted that the parameters 
of linear approximation are in fact functions of the angle ζ. 
In other words, it is possible to employ the representation 

 

ρ
0
(ζ, ζ) = ρ

0
(ζ, ζ, g = 0) + 

f
∧

1
(ζ)

2z  + g 
f
∧

2
(ζ)

2ζ
 , (15) 

 

where f
∧

1
 and f

∧

2
 are the functions satisfying the same 

condition, following from the symmetry of the function 
ρ(η, ζ) with respect to the variables η and ζ. This leads to 

the requirement that the functions f
∧

1
(ζ) and f

∧

2
(ζ) be 

represented by complete squares. Subsequent numerical 

analysis of the functions f
∧

1
 and f

∧

2
 and their derivatives, 

according to the tables,7 gives the results 
 

f
∧

1
(ζ) = f

∧

1
2(ζ) = (0.386 – 0.237ζ)2 , 

 

f
∧

2
(ζ) = 0.730ζ2 – 0.350ζ – 0.118 , (16) 

 

where the function f
∧

2
 can be easily expressed in the form of 

a linear combination of complete squares. There exist many 
versions in this case, but one of them is sufficient here 

 

f
∧

2
(ζ) = f 

2

2
(ζ) – f 

3

2
(ζ)=(1.414–1.907ζ)2–(1.479–1.705ζ)2. (17) 

 

In the case of a conservative anisotropic scattering 
(g = 0.5 – 0.9) we finally obtain an approximation formula 

 

ρ
0
(η, ζ)=

f
0
(η) f

0
(ζ)

η + ζ
 – 

f
1
(η) f

1
(ζ)

η + ζ
+g 

f
2
(η) f

2
(ζ) – f

3
(η) f

3
(ζ)

η + ζ
 (18) 

 

for the reflective coefficient. The functions f
1
, f

2
, and f

3
 are 

calculated using Eqs. (16) and (17), and the function 
f
0
(η) = ϕ

0
(η)/2. It can be seen from the comparison between 

the values of the function ρ
0
(ζ, ζ) obtained from formula (18) 

and those calculated using the rigorous method9 that the 
relative error for the value ζ = 0.2 is less than 3% and for 
ζ > 0.2 it is within a fraction of a per cent (Table III).  
 

TABLE III. Errors of approximation of the function 
ρ
0
(η, ζ) using formula (16), %. 

 

ζ/g 0.5 0.75 0.8 0.85 0.9 

0.1 12 15 17 19 27 
0.2 3.0 0.3 0.9 1.5 3.0 
0.4 0.1 0.5 0.7 0.8 0.4 
0.6 0.1 <0.1 <0.1 <0.1 <0.1 
0.8 0.1 0.05 0.2 0.1 0.3 
1.0 ≤0.1 <0.1 <0.1 <0.1 0.1 

 

One can assume that the accuracy of calculations by 
formula (18) also holds for other sets of η and ζ values. But 
for ζ ≤ 0.15 the error increases to 15–20% and the above–
proposed formulas are invalid. The situation can be improved 
by a proper selection of the parameters of the linear 
dependences for the functions f

2
 and f

3,
 if any the form of the 

function f
1
 being unchanged. It should be noted that Eq. (18) 

is not reduced to the formula for isotropic scattering (12) at 
g = 0, since it has been obtained under condition g ≥ 0.5.  
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A rigorous numerical method for calculating the function 
ρ(ζ, η) requires long computer time and is not useful, e.g., in 
radiative climatic models. The approximate analytical 
formulas ensuring a sufficiently high–precision calculations 
are more convenient for use in applied problems of 
atmospheric optics. 

 
FORMULAS FOR SCATTERING AND ABSORPTION 

COEFFICIENTS OF A CLOUD LAYER EXPRESSED 

IN TERMS OF DIFFUSE RADIATION INTENSITY 
 
Let us consider a plane horizontally infinite 

homogeneous cloud layer. Optical thickness of this layer 
τ
0
 = εz, where ε = σ + κ is the volume extinction coefficient, 

σ is the volume scattering coefficient, and κ is the volume 
absorption coefficient, z is the geometric thickness of the 
layer, and Λ = σ/(σ + κ) is the albedo of single scattering. In 
the cloud layers in the visible spectral region 1 – Λ n 1. 

Let a parallel flux of solar radiation be incident on the 
upper boundary of the layer at the angle across ζ. To describe 
the reflected and transmitted by the layer diffuse radiation we 
introduce the intensities averaged over azimuth 
 

I(0, η, ζ) = Sζρ(0, η, ζ) ; 
I(τ

0
, η, ζ) = Sζσ(τ

0
, η, ζ) ; (19) 

 

where ρ(0, η, ζ) and σ(τ
0
, η, ζ) are the brightness 

coefficients for diffuse reflection and transmission which for 
a large optical thickness of the layer, are7 

 

ρ(0, η, ζ) =  , 
 

σ(τ
0
, η, ζ) = 

u(z) u
–

(η) M e–κτ0

1 – NN
–

 e–2κτ0

 . (20) 

 

Functions I(0, η, ζ) and I(τ
0
, η, ζ) can be measured in 

experiment, the function u(ζ) and the values M, N, k, and Q 
depend on actual absorption in the cloud and on the 
scattering phase function that are described with the 
parameters Λ and g; the dependence on optical thickness is 
the exponential one. Thus there are two equations and three 
unknown values Λ, g, and τ

0
. Assuming the parameter g to be 

known we shall attempt to determine the values Λ and τ
0
 

from independent measurements or model calculations. The 
effect of the light reflected from the underlying surface is 
taken into account as follows: 

 

⎭⎪
⎬
⎪⎫N

–
 = N – AMQ2/(1 – Aa∞)

   u
–

(η) = u(η) + AQa(η)/(1 – Aa∞)
 , (21) 

 
where A is the albedo of the surface. 

M.D. King in his paper10 when solving the problem 
on determining optical thickness of the layer from the 
measured brightness of reflected radiation has obtained 
for optical thickness the relation τ′ = τ

0
 (3 – x

1
) by 

transforming the first equation of a system of 
equations (19). Here we represent an intermediate 
relation which will be used in the below considerations 

 

e2κτ0 – N
–

N = 
MNu(η)u(ζ)

ρ(η, ζ) – ρ(0, η, ζ)
 . (22) 

 
We should like to note that in contrast to this paper in 
Ref. 8 it is assumed that a weak absorption in the clouds 
as well as the spectral dependence of the albedo of the 
underlying surface can be neglected and the problem 
should be solved for Λ = 1 and A = 0.2. 

To solve a system of equations (19), Eq. (22) is 
substituted into a system of equations (19) instead of the 
second equation and after obvious transformations the 
formula is given by 

 

σ2(τ
0
, η, ζ) N

–
 u2(η) =u

–2(η) {Mu(η) u(ζ) [ρ(η, ζ) – ρ(0, η, ζ)] – 

 
– N [ρ(η, ζ) – ρ(0, η, ζ)]2 . (23) 
 
As was noted above at weak absorption the series 
expansions of the quantities and functions entering into 
this formula over small parameter powers are known. The 
series expansions for values M and N over the parameter 
s are given by 

 
M = 8 s + O(s3) , 
 
N = 1 – 3 δs + 9/2 δ2s2 + O(s3) . (24) 
 

Let us substitute series expansions (2) – (4) and 
(24) into Eq. (23) and denote the difference [ρ

0
(η, ζ) – 

– ρ(0, η, ζ)] = ρ, and then making necessary 
transformations and neglecting the terms of the order of 
s3 and higher we obtain the equation for s2 whose 
solution is rather simple 

 

 

s2 = 

    (1 – A)2[u
0
2(η) ρ2 – u

0
2(η) σ2(τ

0
)

16 u
0
2(η) [u

0
2(ζ)u

–2
0
(η) – A2σ2(τ

0
)] –u

–2
0
 a

2
(η) a

2
(ζ) ρ/(3δ) – 12 δσ2(τ

0
) u

0
2(η) A(1 – A)

 
+ 2A u

–2
0
(η) (a

2
(η) – 6δu

0
(η)) ρ

.(25) 

 

The values of the functions ρ(0, η, ζ) and σ(τ
0
, η, ζ) 

are obtained from the measurements of the intensity of 
reflected and transmitted through the cloud layer 
radiation. The values of the functions u

0
(η), a

2
(ζ), and 

ρ
0
(η, ζ) for η, and ζ corresponding to measurement 

conditions are taken from tables5,7 or calculated using the 
above–proposed formulas. 

 

The relation for τ′ = τ
0
 (3 – x

1
) derived in Ref. 8 is 

 

τ′ = (2s)–1 ln N
–
[ ]

Mu(η) u(ζ)
ρ(η, ζ) – ρ(0, η, ζ)

 + N  . (26) 

 

By substituting the series expansions of the asymptotic 
constants and truncating the series by terms containing the 
third power of the parameter s 
 

 

τ′ = (2s)–1 

⎩
⎨
⎧
2 ln N + ln 

1 – A – 4As – 6Aδs2

1 – A + 4As – 6Aδs2
 + 

⎭
⎬
⎫

ln 
ρ + 4u

0
(η)u

0
(ζ)s + a2(η)a2(ζ)s2/(6δ) – 18u

0
(η)u

0
(ζ)s3

ρ – 4u
0
(η) u

0
(ζ) s + a

2
(η) a

2
(ζ)s2/(6δ)

. (27) 

 
In addition, the formulas for the volume absorption 

and scattering coefficients κ = (1 – Λ) τ
0
/z are  

valid or, taking into account the definition  
 

of the parameter s, κ = τ′s2/z. For the volume  
scattering coefficient we have  
σ = τ′[(3 – x

1
)–1 – s2]/z. 
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SYSTEMATIC ERRORS AND RANGE OF 

APPLICABILITY 
 
In our previous paper3 the formulas for determining 

the relative errors δs and δτ
0
 were proposed. A more 

comprehensive analysis of this problem leads to the other 
relations which follow from the formulas for s2 and τ

0
 

according to the theory of errors. Thus, when the radiation 

fluxes F↑ and F↓ are measured, we have 
 

δs ≤ 
ΔF

1 – F↑ – F↓
 + 

ΔFa
2
(ζ) + 16u

0
Δu

0
 + (1 – F↑) Δa

2

16u
0
(ζ) – 2a

2
(ζ) (1 – F↑)

 ; (28) 

 

δτ
0
 ≤ ⎝
⎛

⎠
⎞(3δ + 25) Δs + 

ΔF
(1 – F↑)2  / τ

0
 + 

Δx
1

3 – x
1
 + 

Δs
s  , (29) 

 

where ΔF is the absolute error of measurements of the 
fluxes, the stronger is the radiation absorption the larger is 

the value (1 – F↑ – F) determining the relative value of the 
energy influx into the layer. Typically, this value is in the 
range from 0.04 to 0.08 (small difference between the close 
values). Thus, the first term of the sum in Eq. (28) 
determines the error in the value s, i.e., δ

s
 ≤ 4% for 

ΔF = 0.002. The absolute errors Δu
0
 and Δa

2
 are caused by the 

flux of radiation partially scattered in the overlying 
atmosphere that is incident on the upper boundary of a cloud 
layer. In Ref. 7 it is shown that the fraction of scattered light 
in a clear atmosphere can reach 0.1. In the case of a 
completely diffuse rafraction we should use the value  

⌡⌠
0

1

 u
0
(ζ) ζ dζ = 1 instead of u

0
(ζ) and 6σ = 8.5 instead of 

α
2
(ζ) and so, taking into account the above said, we have 

 

Δu
0
(ζ) = 0.1 (u

0
(ζ) – 1) ∼ 0.02 , 

 

Δa
2
(ζ) = 0.1 (a

2
(ζ) – 6δ) ∼ 0.2 . (30) 

 

The differences in relations (30) depend on the cosine of the 
zenith angle ζ and are minimal at the zenith angles 
ζ ∼ 0.6 – 0.7. So it is advisable to provide the fulfilment of 
this condition during measurements. 

The error in the value τ
0
 is primarily determined by 

the error in s value and by the uncertainty in the scattering 
phase function x

1
. For the clouds of large optical thickness  

the first term in the sum of Eq. (28) can be small and 
weakly affects the value of the error. It can easily be shown 
that for intensities the errors will be the same since the 
relevant formulas have analogous structure and are 
expressed in terms of the same asymptotic constants. 

When using the relations obtained for τ
0
 and s it is 

necessary to take into account the fact that they are valid 
only within the applicability limits of asymptotic formulas 
and series expansions, that is (τ

0
 . 1), (1 – Λ n 1). The 

applicability limits of the proposed method concerning the 
optical thicknesses of the scattering layer and actual light 
absorption in it has been thoroughly analyzed in Ref. 3 

 
CONCLUSIONS 

 
It should be noted that the method proposed in Ref. 3 

and developed in this paper which is used for obtaining the 
volume coefficients of scattering and absorption based on 
measurements of the diffuse radiation field at the 
boundaries of a scattering layer is useful in studying the 
cloud layers with the parameters satisfying the applicability 
limits of asymptotic formulas. The formulas are inapplicable 
to the clouds of a small optical thickness or in the region of 
strong absorption. 

The approximation formulas and above–derived 
additional terms of asymptotic series expansions 
significantly improve the calculational accuracy, widen the 
applicability range, and allow one to use the analytical 
representations for all functions what is particularly useful 
in solving inverse problems. 
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